下載範例圖片
curl -O http://download.tensorflow.org/example_images/flower_photos.tgz
curl -O http://download.tensorflow.org/example_images/flower_photos.tgz
curl -O https://raw.githubusercontent.com/tensorflow/tensorflow/10cf65b48e1b2f16eaa826d2793cb67207a085d0/tensorflow/examples/image_retraining/retrain.py
python retrain.py --image_dir flower_photos --output_graph output_graph.pb --output_labels output_labels.txt
import tensorflow as tf, sys image_path = sys.argv[1] graph_path = 'output_graph.pb' labels_path = 'output_labels.txt' # Read in the image_data image_data = tf.gfile.FastGFile(image_path, 'rb').read() # Loads label file, strips off carriage return label_lines = [line.rstrip() for line in tf.gfile.GFile(labels_path)] # Unpersists graph from file with tf.gfile.FastGFile(graph_path, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') # Feed the image_data as input to the graph and get first prediction with tf.Session() as sess: softmax_tensor = sess.graph.get_tensor_by_name('final_result:0') predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data}) # Sort to show labels of first prediction in order of confidence top_k = predictions[0].argsort()[-len(predictions[0]):][::-1] for node_id in top_k: human_string = label_lines[node_id] score = predictions[0][node_id] print('%s (score = %.5f)' % (human_string, score))
tensorboard --logdir /tmp/retrain_logs