先來個最基本的 TensorFlow 實作
869c27393f454e42406f2e55a5b2a34a.png
這個範例是把圖片根據 "目錄名稱" 分類好,透過 retrain.py 來訓練,訓練後的結果會存在 output_graph.pb 跟 output_labels.txt 中,可以隨時調用。
 
 
  • 下載範例圖片
    curl -O http://download.tensorflow.org/example_images/flower_photos.tgz
    
  • 下載程式
    curl -O https://raw.githubusercontent.com/tensorflow/tensorflow/10cf65b48e1b2f16eaa826d2793cb67207a085d0/tensorflow/examples/image_retraining/retrain.py
    
  • 開始訓練
    python retrain.py --image_dir flower_photos --output_graph output_graph.pb --output_labels output_labels.txt
    
  • 套用訓練後的資料判斷
    將下列程式命名為 classify.py
    import tensorflow as tf, sys
     
    image_path = sys.argv[1]
    graph_path = 'output_graph.pb'
    labels_path = 'output_labels.txt'
     
    # Read in the image_data
    image_data = tf.gfile.FastGFile(image_path, 'rb').read()
     
    # Loads label file, strips off carriage return
    label_lines = [line.rstrip() for line
        in tf.gfile.GFile(labels_path)]
     
    # Unpersists graph from file
    with tf.gfile.FastGFile(graph_path, 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
        _ = tf.import_graph_def(graph_def, name='')
     
    # Feed the image_data as input to the graph and get first prediction
    with tf.Session() as sess:
        softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
        predictions = sess.run(softmax_tensor, 
        {'DecodeJpeg/contents:0': image_data})
        # Sort to show labels of first prediction in order of confidence
        top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
        for node_id in top_k:
             human_string = label_lines[node_id]
             score = predictions[0][node_id]
             print('%s (score = %.5f)' % (human_string, score))
  • 也可以用 Tensorboard 看看訓練的資料過程
    tensorboard --logdir /tmp/retrain_logs
    
回應
訪客如要回應,請先 登入