-r”

Apache e
"

y

Solr

Apache Solr Reference Guide

Covering Apache Solr 4.6

Li censed to the Apache Software Foundati on (ASF) under one
or nore contributor license agreenents. See the NOTICE file
distributed with this work for additional information
regardi ng copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in conpliance
with the License. You may obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE-2. 0

Unl ess required by applicable law or agreed to in witing,
software distributed under the License is distributed on an
"AS | S" BASIS, W THOUT WARRANTI ES OR CONDI TI ONS OF ANY
KIND, either express or inplied. See the License for the
speci fic | anguage governing perm ssions and linitations
under the License.

http://www.apache.org/licenses/LICENSE-2.0

Apache Solr Reference Guide

This reference guide describes Apache Solr, the open source solution for search. You can download Apache Solr from the Solr website at http://lu
cene.apache.org/solr/.

This Guide contains the following sections:
Getting Started: This section guides you through the installation and setup of Solr.

Using the Solr Administration User Interface: This section introduces the Solr Web-based user interface. From your browser you can view
configuration files, submit queries, view logfile settings and Java environment settings, and monitor and control distributed configurations.

Documents, Fields, and Schema Design: This section describes how Solr organizes its data for indexing. It explains how a Solr schema defines
the fields and field types which Solr uses to organize data within the document files it indexes.

Understanding Analyzers, Tokenizers, and Filters: This section explains how Solr prepares text for indexing and searching. Analyzers parse
text and produce a stream of tokens, lexical units used for indexing and searching. Tokenizers break field data down into tokens. Filters perform
other transformational or selective work on token streams.

Indexing and Basic Data Operations: This section describes the indexing process and basic index operations, such as commit, optimize, and
rollback.

Searching: This section presents an overview of the search process in Solr. It describes the main components used in searches, including
request handlers, query parsers, and response writers. It lists the query parameters that can be passed to Solr, and it describes features such as
boosting and faceting, which can be used to fine-tune search results.

The Well-Configured Solr Instance: This section discusses performance tuning for Solr. It begins with an overview of the sol r confi g. xm
file, then tells you how to configure cores with sol r. xm , how to configure the Lucene index writer, and more.

Managing Solr: This section discusses important topics for running and monitoring Solr. It describes running Solr in the Apache Tomcat servlet
runner and Web server. Other topics include how to back up a Solr instance, and how to run Solr with Java Management Extensions (JMX).

SolrCloud: This section describes the newest and most exciting of Solr's new features, SolrCloud, which provides comprehensive distributed
capabilities.

Legacy Scaling and Distribution: This section tells you how to grow a Solr distribution by dividing a large index into sections called shards,
which are then distributed across multiple servers, or by replicating a single index across multiple services.

Client APIs: This section tells you how to access Solr through various client APIs, including JavaScript, JSON, and Ruby.

Apache Solr Reference Guide 4.6 2

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

About This Guide

This guide describes all of the important features and functions of Apache Solr. It is free to download from http:/lucene.apache.org/solr/.
Designed to provide high-level documentation, this guide is intended to be more encyclopedic and less of a cookbook. It is structured to address a
broad spectrum of needs, ranging from new developers getting started to well-experienced developers extending their application or
troubleshooting. It will be of use at any point in the application life cycle, for whenever you need authoritative information about Solr.

The material as presented assumes that you are familiar with some basic search concepts and that you can read XML. It does not assume that

you are a Java programmer, although knowledge of Java is helpful when working directly with Lucene or when developing custom extensions to a
Lucene/Solr installation.

Special Inline Notes

Special notes are included throughout these pages.

Note Type Look & Description

Information
ﬂ Notes with a blue background are used for information that is important for you to know.
Notes
", Yellow notes are further clarifications of important points to keep in mind while using Solr.
Tip
@ Notes with a green background are Helpful Tips.
Warning

'a Notes with a red background are warning messages.

Hosts and Port Examples

The default port configured for Solr during the install process is 8983. The samples, URLs and screenshots in this guide may show different ports,
because the port number that Solr uses is configurable. If you have not customized your installation of Solr, please make sure that you use port
8983 when following the examples, or configure your own installation to use the port numbers shown in the examples. For information about
configuring port numbers used by Tomcat or Jetty, see Managing Solr.

Similarly, URL examples use 'localhost' throughout; if you are accessing Solr from a location remote to the server hosting Solr, replace ‘localhost’
with the proper domain or IP where Solr is running.

Paths

Path information is given relative to sol r. home, which is the location under the main Solr installation where Solr's collections and their conf and
dat a directories are stored. In the default Solr package, sol r . hone is exanpl e/ sol r, which is itself relative to where you unpackaged the
application; if you have moved this location for your servlet container or for another reason, the path to sol r. honme may be different than the
default.

Apache Solr Reference Guide 4.6 3

http://lucene.apache.org/solr/

Getting Started

Solr makes it easy for programmers to develop sophisticated, high-performance search applications with advanced features such as faceting
(arranging search results in columns with numerical counts of key terms). Solr builds on another open source search technology: Lucene, a Java
library that provides indexing and search technology, as well as spellchecking, hit highlighting and advanced analysis/tokenization capabilities.
Both Solr and Lucene are managed by the Apache Software Foundation (www.apache.org).

The Lucene search library currently ranks among the top 15 open source projects and is one of the top 5 Apache projects, with installations at
over 4,000 companies. Lucene/Solr downloads have grown nearly ten times over the past three years, with a current run-rate of over 6,000
downloads a day. The Solr search server, which provides application builders a ready-to-use search platform on top of the Lucene search library,
is the fastest growing Lucene sub-project. Apache Lucene/Solr offers an attractive alternative to the proprietary licensed search and discovery
software vendors.

This section helps you get Solr up and running quickly, and introduces you to the basic Solr architecture and features. It covers the following
topics:

Installing Solr: A walkthrough of the Solr installation process.
Running Solr: An introduction to running Solr. Includes information on starting up the servers, adding documents, and running queries.
A Quick Overview: A high-level overview of how Solr works.

A Step Closer: An introduction to Solr's home directory and configuration options.

Installing Solr

This section describes how to install Solr. You can install Solr anywhere that a suitable Java Runtime Environment (JRE) is available, as detailed
below. Currently this includes Linux, OS X, and Microsoft Windows. The instructions in this section should work for any platform, with a few
exceptions for Windows as noted.

Got Java?

You will need the Java Runtime Environment (JRE) version 1.6 or higher. At a command line, check your Java version like this:

$ java -version

java version "1.6.0_0"

| cedTea6 1.3.1 (6b1l2-0Oubuntu6.1) Runtinme Environment (build 1.6.0_0-bl2)
OpenJDK Client VM (build 1.6.0 _0-bl1l2, mi xed node, sharing)

The output will vary, but you need to make sure you have version 1.6 or higher. If you don't have the required version, or if the java command is
not found, download and install the latest version from Sun at http://java.sun.com/javase/downloads/.

Installing Solr

Solr is available from the Solr website at http://lucene.apache.org/solr/.

For Linux/Unix/OSX systems, download the . gzi p file. For Microsoft Windows systems, download the . zi p file.

Solr runs inside a Java servlet container such as Tomcat, Jetty, or Resin. The Solr distribution includes a working demonstration server in the

Exanpl e directory that runs in Jetty. You can use the example server as a template for your own installation, whether or not you are using Jetty
as your servlet container. For more information about the demonstration server, see the Solr Tutorial.

., Solr ships with a working Jetty server, with optimized settings for Solr, inside the exanpl e directory. It is recommended that you
use the provided Jetty server for optimal performance. If you absolutely must use a different servlet container then continue to
the next section on how to install Solr.

To install Solr

1. Unpack the Solr distribution to your desired location.
2. Stop your Java servlet container.

3. Copy the sol r. war file from the Solr distribution to the webapps directory of your servlet container. Do not change the name of this file:

Apache Solr Reference Guide 4.6 4

http://www.apache.org/
http://java.sun.com/javase/downloads/
http://lucene.apache.org/solr/
https://lucene.apache.org/solr/tutorial.html

it must be named sol r. war .
4. Copy the Solr Home directory sol r - 4. x. 0/ exanpl e/ sol r/ from the distribution to your desired Solr Home location.
5. Start your servlet container, passing to it the location of your Solr Home in one of these ways:
® Set the Java system property sol r. sol r. hone to your Solr Home. (for example, using the example jetty setup: j ava
-Dsolr.solr.home=/sone/dir -jar start.jar).
® Configure the servlet container so that a INDI lookup of j ava: conp/ env/ sol r/ hone by the Solr webapp will point to your Solr
Home.
® Start the servlet container in the directory containing . / sol r : the default Solr Home is sol r under the JVM's current working
directory ($CWY sol r).
To confirm your installation, go to the Solr Admin page at htt p: / /| ocal host : 8983/ sol r/ . Note that your servlet container may have started
on a different port: check the documentation for your servlet container to troubleshoot that issue. Also note that if that port is already in use, Solr
will not start. In that case, shut down the servlet container running on that port, or change your Solr port.

For more information about installing and running Solr on different Java servlet containers, see the Solrinstall page on the Solr Wiki.

Related Topics

® Solrinstall

Running Solr

This section describes how to run Solr with an example schema, how to add documents, and how to run queries.

Start the Server

If you didn't start Solr after installing it, you can start it by running st art . j ar from the Solr exanpl e directory.

$ java -jar start.jar

If you are running Windows, you can start the Web server by running st art . bat instead.

C.\ Applications\Solr\exanple > start. bat

That's it! Solr is running. If you need convincing, use a Web browser to see the Admin Console.

http://1ocal host: 8983/ solr/

7/
Apache -
~
Solr ~
& Dashboard
=l Instance |8 System [Y]
(3 Logging
H Start about 2 hours ago
= Physical Memor
£F Core Admin Y Y
- L
.| Java Praperties |4 cwD JUsers fatymes/Desktop/solrfexample
= Thread Dump |
|y Data JUsers/atymes/Desktop/solr/example fsolr/collectionl...

Swap Space
& collectionl

= Versions

5o SOIr-spec 4.0.0.2012.08.06.22.50.47
File Descriptor Count

lucene-spet.0.0-BETA

D Ivm FE JVM-Memory

The Solr Admin interface.

If Solr is not running, your browser will complain that it cannot connect to the server. Check your port number and try again.

Apache Solr Reference Guide 4.6 5

http://localhost:8983/solr/
https://wiki.apache.org/solr/SolrInstall
https://wiki.apache.org/solr/FrontPage
http://wiki.apache.org/solr/SolrInstall
http://localhost:8983/solr/

Add Documents

Solr is built to find documents that match queries. Solr's schema provides an idea of how content is structured (more on the schema later), but
without documents there is nothing to find. Solr needs input before it can do anything.

You may want to add a few sample documents before trying to index your own content. The Solr installation comes with example documents
located in the exanpl e/ exanpl edocs directory of your installation.

In the exanpl edocs directory is the SimplePostTool, a Java-based command line tool, post . j ar , which can be used to index the documents.
Do not worry too much about the details for now. The Indexing and Basic Data Operations section has all the details on indexing.

To see some information about the usage of post . j ar, use the - hel p option.

$ java -jar post.jar -help

The SimplePostTool is a simple command line tool for POSTing raw XML to a Solr port. XML data can be read from files specified as command
line arguments, as raw command line ar g strings, or via STDIN.

Examples:

java -Ddata=files -jar post.jar *.xnl
java -Ddata=args ~-jar post.jar '<del ete><id>42</id></del ete>'
java -Ddata=stdin -jar post.jar < hd.xn

Other options controlled by System Properties include the Solr URL to POST to, and whether a commit should be executed. These are the
defaults for all System Properties:

-Ddat a=fil es
-Durl =http://Iocal host: 8983/ sol r/ updat e
-Dcommi t =yes

Go ahead and add all the documents in the directory as follows:

$ java -Durl=http://]1 ocal host: 8983/ sol r/update -jar

post.jar *.xm

Si npl ePost Tool :
Si npl ePost Tool :

version 1.2
WARNI NG Make sure your XM docunents are encoded in UTF-8,

ot her

encodi ngs are not currently supported

Si npl ePost Tool : POSTing files to http://10.211.55.8:8983/sol r/update..
Si npl ePost Tool : POSTing file hd. xnl

Si npl ePost Tool : POSTing file ipod_other.xm

Si npl ePost Tool : POSTing file ipod_video. xnl

Si npl ePost Tool : POSTing file mem xm

Si npl ePost Tool : POSTing file monitor. xm

Si npl ePost Tool : POSTing file nonitor2. xm

Si npl ePost Tool : PCSTing file np500. xm

Si npl ePost Tool : POSTing file sd500. xm

Si npl ePost Tool : POSTing file solr.xm

Si npl ePost Tool : POSTing file spellchecker.xm
Si npl ePost Tool : POSTing file utf8-exanple.xn
Si npl ePost Tool : POSTing file vidcard. xm

Si npl ePost Tool : COMM Tting Sol r index changes..
Ti me spent: 0:00:00.633

$

That's it! Solr has indexed the documents contained in the files.

Ask Questions

Now that you have indexed documents, you can perform queries. The simplest way is by building a URL that includes the query parameters. This

Apache Solr Reference Guide 4.6 6

is exactly the same as building any other HTTP URL.
For example, the following query searches all document fields for "video™:
http://1ocal host: 8983/ sol r/ sel ect ?g=vi deo

Notice how the URL includes the host name (I ocal host), the port number where the server is listening (8983), the application name (sol r), the
request handler for queries (sel ect), and finally, the query itself (q=vi deo).

The results are contained in an XML document, which you can examine directly by clicking on the link above. The document contains two parts.
The first part is the r esponseHeader , which contains information about the response itself. The main part of the reply is in the result tag, which
contains one or more doc tags, each of which contains fields from documents that match the query. You can use standard XML transformation
techniques to mold Solr's results into a form that is suitable for displaying to users. Alternatively, Solr can output the results in JSON, PHP, Ruby
and even user-defined formats.

Just in case you are not running Solr as you read, the following screen shot shows the result of a query (the next example, actually) as viewed in
Mozilla Firefox. The top-level response contains a | st named r esponseHeader and a result named response. Inside result, you can see the
three docs that represent the search results.

|sn0o0 Mozilla Firefox
J. http:/ /localhost. . [select?g=video [+ l

-
|. localhost:8983 [solr[select?q=video v C'] (_"‘l' Gooz_Q) @

This XML file does not appear to have any style information associated with it. The document tree is shown below.

M
|
|
|

— <response> :
— <lIst name="responseHeader"> |
<int name="stats">0</int> |
<int name="QTime">0</int> I
— <lst name="params"> :
<str name="q">video</str> |
</Ist> |
</Ist> |
— <result name="response” numFound="3" start="0"> !
- <doc> :
— <arr name="cat"> |
<str>electronics</str> |
<str>music</str> |
</arr> I
— <arr name="features"> :
<str>iTunes, Podcasts, Audiobooks</str> |
— <str> |
Stores up to 15,000 songs, 25,000 photos, or 150 hours of video |
</str> !
- <str> L
2.5-inch, 320x240 color TFT LCD display with LED backlight
</str>
<str>Up to 20 hours of battery life</str>
— <str>
Plays AAC, MP3, WAV, AIFF, Audible, Apple Lossless, H.264 video
</str>
— <str>
Notes, Calendar, Phone book, Hold button, Date display, Photo wallet, Built-in games, JPEG photo playback, Upgradeable
firmware, USB 2.0 compatibility, Playback speed control, Rechargeable capability, Battery level indication
</str>
</arr>
<str name="id">MA147LL/A</str>
<bool name="inStock">true</bool>
<str name="includes">earbud headphones, USB cable</str>
<str name="manu">Apple Computer Inc.</str>
<date name="manufacturedate_dt">2005-10-12T08:00:00Z</date>
<str name="name">Apple 60 GB iPod with Video Playback Black</str>
<int name="popularity">10</int>
<float name="price">399 O</float>
<str name="store">37.7752,-100.0232</str>
<float name="weight">5.5</float>
</doc>

‘MWM PP Y T Sy _Spv Y SRy ey Il B, | o, P ——LS
An XML response to a query.

Once you have mastered the basic idea of a query, it is easy to add enhancements to explore the query syntax. This one is the same as before
but the results only contain the ID, name, and price for each returned document. If you don't specify which fields you want, all of them are
returned.

Apache Solr Reference Guide 4.6 7

http://localhost:8983/solr/select?q=video

http://1ocal host: 8983/ sol r/sel ect ?g=vi deo&f | =i d, nane, pri ce

Here is another example which searches for "black" in the nane field only. If you do not tell Solr which field to search, it will search default fields,
as specified in the schema.

http://1ocal host: 8983/ sol r/ sel ect ?2q=nane: bl ack
You can provide ranges for fields. The following query finds every document whose price is between $0 and $400.
http://1ocal host: 8983/ sol r/sel ect ?2g=pri ce: [09%20TO¥20400] &f | =i d, nan®, pri ce

Faceted browsing is one of Solr's key features. It allows users to narrow search results in ways that are meaningful to your application. For
example, a shopping site could provide facets to narrow search results by manufacturer or price.

Faceting information is returned as a third part of Solr's query response. To get a taste of this power, take a look at the following query. It adds
facet=true andfacet.field=cat.

http://1ocal host: 8983/ sol r/sel ect ?2g=pri ce: [0%20TO¥20400] &f | =i d, nane, pri ce&f acet =t rue&f acet . fi el d=cat

In addition to the familiar r esponseHeader and response from Solr, a f acet _count s element is also present. Here is a view with the
responseHeader and response collapsed so you can see the faceting information clearly.

An XML Response with faceting

<?xm version="1.0" encodi ng="UTF-8"?>
<response>
<l st name="responseHeader" >
</lst>
<result nanme="response" nunfFound="9" start="0">
<doc>
<str nanme="id">SOLR1000</str>

<str nanme="nane">Solr, the Enterprise Search Server</str>
<float nane="price">0.0</fl oat ></ doc>

</result>
<l st nanme="facet_counts">
<l st nanme="facet_queries"/>
<l st name="facet_fields">
<l st nanme="cat">
<int name="el ectronics">6</int>
<int name="nenory">3</int>
<int name="search">2</int>
<int name="sof tware">2</int>
<int name="canera">1</int>
<int name="copier">1</int>
<int name="rmultifunction printer">1</int>
<i nt name="nusi c">1</int>
<int name="printer">1</int>
<i nt name="scanner">1</int>
<i nt name="connector">0</int>
<i nt name="currency">0</int>
<i nt nanme="graphics card">0</int>
<int name="hard drive">0</int>
<i nt name="nonitor">0</int>
</|st>
</lst>
<l st nanme="facet_dates"/>
<l st name="facet_ranges"/>
</|st>
</ response>

The facet information shows how many of the query results have each possible value of the cat field. You could easily use this information to
provide users with a quick way to narrow their query results. You can filter results by adding one or more filter queries to the Solr request. Here is

Apache Solr Reference Guide 4.6 8

http://localhost:8983/solr/select?q=video&fl=id,name,price
http://localhost:8983/solr/select?q=name:black
http://localhost:8983/solr/select?q=price:%5B0%20TO%20400%5D&fl=id,name,price
http://localhost:8983/solr/select?q=price:%5B0%20TO%20400%5D&fl=id,name,price&facet=true&facet.field=cat

a request further constraining the request to documents with a category of "software".

http://1ocal host: 8983/ sol r/sel ect ?2g=pri ce: [0%20TO¥20400] &f | =i d, nane, pri ce&f acet =t rue&f acet . fi el d=cat & g=cat
:software

A Quick Overview

Having had some fun with Solr, you will now learn about all the cool things it can do.

Here is a typical configuration:

E Server

Web server ‘

Web

- application
Document

A / |
= / i database

«

/
— ~

Solr

In the scenario above, Solr runs alongside another application in a Web server. For example, an online store application would provide a user
interface, a shopping cart, and a way to make purchases. The store items would be kept in some kind of database.

Solr makes it easy to add the capability to search through the online store through the following steps:

1. Define a schema. The schema tells Solr about the contents of documents it will be indexing. In the online store example, the schema
would define fields for the product name, description, price, manufacturer, and so on. Solr's schema is powerful and flexible and allows
you to tailor Solr's behavior to your application. See Documents, Fields, and Schema Design for all the details.

2. Deploy Solr to your application server.

3. Feed Solr the document for which your users will search.

4. Expose search functionality in your application.

Because Solr is based on open standards, it is highly extensible. Solr queries are RESTful, which means, in essence, that a query is a simple
HTTP request URL and the response is a structured document: mainly XML, but it could also be JSON, CSV, or some other format. This means
that a wide variety of clients will be able to use Solr, from other web applications to browser clients, rich client applications, and mobile devices.
Any platform capable of HTTP can talk to Solr. See Client APIs for details on client APIs.

Solr is based on the Apache Lucene project, a high-performance, full-featured search engine. Solr offers support for the simplest keyword
searching through to complex queries on multiple fields and faceted search results. Searching has more information about searching and queries.

If Solr's capabilities are not impressive enough, its ability to handle very high-volume applications should do the trick.

A relatively common scenario is that you have so many queries that the server is unable to respond fast enough to each one. In this case, you
can make copies of an index. This is called replication. Then you can distribute incoming queries among the copies in any way you see fit. A

Apache Solr Reference Guide 4.6 9

http://localhost:8983/solr/select?q=price:%5B0%20TO%20400%5D&fl=id,name,price&facet=true&facet.field=cat&fq=cat:software
http://localhost:8983/solr/select?q=price:%5B0%20TO%20400%5D&fl=id,name,price&facet=true&facet.field=cat&fq=cat:software

round-robin mechanism is one simple way to do this.

Replication
Master

slavel slave? slave3

Another useful technique is sharding. If you have so many documents that you simply cannot fit them all on a single box for RAM or index size
reasons, you can split an index into multiple pieces, called shards. Each shard lives on its own physical server. An incoming query is sent to all

the shard servers, which respond with matching results.

Single Server Distributed

Shard1 Shard 2

If you have huge numbers of documents and users, you might need to combine the technigues of sharding and replication. In this case, Solr's
new SolrCloud functionality may be more effective for your needs. SolrCloud includes a number of features to simplify the process of distributing
the index and the queries, and manage the resulting nodes.

Distributed + Replication

Shard 1 Master Shard 2 Master Shard 3 Master

slavel slavel slavel

.8 R

slave?2 slave2 slave?2

For full details on sharding and replication, see Legacy Scaling and Distribution. We've split the SolrCloud information into it's own section, called
SolrCloud.

Apache Solr Reference Guide 4.6 10

Best of all, this talk about high-volume applications is not just hypothetical: some of the famous Internet sites that use Solr today are Macy's,
EBay, and Zappo's.

For more information, take a look at https://wiki.apache.org/solr/PublicServers.

A Step Closer

You already have some idea of Solr's schema. This section describes Solr's home directory and other configuration options.

When Solr runs in an application server, it needs access to a home directory. The home directory contains important configuration information and
is the place where Solr will store its index.

The crucial parts of the Solr home directory are shown here:

<sol r-hone-directory>/
sol r. xm
conf/
sol rconfig. xm
schema. xm
dat a/

You supply sol r. xm , sol rconfi g. xm , and schema. xm to tell Solr how to behave. By default, Solr stores its index inside data.

sol r. xm specifies configuration options for your Solr core, and also allows you to configure multiple cores. For more information on sol r. xm
see The Well-Configured Solr Instance.

sol rconfi g. xm controls high-level behavior. You can, for example, specify an alternate location for the data directory. For more information on
sol rconfi g. xm , see The Well-Configured Solr Instance.

schema. xm describes the documents you will ask Solr to index. Inside schema. xm , you define a document as a collection of fields. You get to

define both the field types and the fields themselves. Field type definitions are powerful and include information about how Solr processes
incoming field values and query values. For more information on schena. xm , see Documents, Fields, and Schema Design.

Apache Solr Reference Guide 4.6 11

https://wiki.apache.org/solr/PublicServers

Upgrading Solr

If you are already using Solr 4.5, Solr 4.6 should not present any major problems. However, you should review the CHANGES. t xt file found in
your Solr package for changes and updates that may effect your existing implementation.

Upgrading from 4.5.x

® The "file" attribute of infoStream in sol r conf i g. xm is removed. Control this via your logging configuration
(org.apache.solr.update.LoggingIinfoStream) instead.

® UnigFieldsUpdateProcessorFactory no longer supports the <Ist named="fields"> init param style that was deprecated in Solr 4.5. If you
are still using this syntax, update your configs to use <arr name="fieldName"> instead. See SOLR-4249 for more details.

Upgrading from Older Versions of Solr

This is a summary of some of the key issues related to upgrading in previous versions of Solr. Users upgrading from older versions are strongly
encouraged to consult CHANGES. t xt for the details of all changes since the version they are upgrading from.

® |n Solr 4.5, XML configuration parsing was made more strict about situations where a single setting is allowed but multiple values are
found. Configuration parsing now fails with an error in situations like this. Also, schema. xm parsing was also made more strict: "default"
or "required" options specified on <dynamni cFi el d/ > declarations will cause an init error. You can safely remove these attributes.

® In Solr 4.5, C oudSol r Ser ver can now use multiple threads to add documents by default. This is a small change in runtime semantics
when using the bulk add method - you will still end up with the same exception on a failure, but some documents beyond the one that
failed may have made it in. To get the old, single threaded behavior, set parallel updates to false on the O oudSol r Ser ver instance.

® Beginning with 4.4, the use of the Compound File Format is determined by IndexWriter configuration, and not the Merge Policy. If you
have explicitly configured a <mer gePol i cy> with the set UseConpoundFi | e configuration option, you should change this to use the
useConpoundFi | e configuration option directly in the <i ndexConf i g> block. Specifying set UseConpoundFi | e on the Merge Policy
will no longer work in Solr 5.0.

® In Solr 4.4, Byt eFi el d and Short Fi el d were deprecated, and will be removed in 5.0. Please switch to using Tri el nt Fi el d

® The pre-4.3.0 sol r. xm "legacy" mode and format will no longer be supported in Solr 5.0. Users are encouraged to migrate from
"legacy" to "discovery" sol r. xm configurations, see Solr Cores and solr.xml.

® As of Solr 4.3 the slf4j/logging jars are no longer included in the Solr webapp to allow for more flexibility in logging.

® Minor changes were made to the Schema API response format in Solr 4.3

® |n Solr 4.1 the method Solr uses to identify node names for SolrCloud was changed. If you are using SolrCloud and upgrading from Solr
4.0, you may have issues with unknown or lost nodes. If this occurs, you can manually set the host parameter either in sol r. xm or as
a system variable. More information can be found in the section on SolrCloud.

® If you are upgrading from Solr 3.x, you should familiarize yourself with the Major Changes from Solr 3 to Solr 4.

Apache Solr Reference Guide 4.6 12

http://lucene.apache.org/solr/4_6_0/changes/Changes.html
https://issues.apache.org/jira/browse/SOLR-4249

Using the Solr Administration User Interface

This section discusses the Solr Administration User Interface (“Admin UI").

The Overview of the Solr Admin Ul explains how the features of the user interface that are new with Solr 4, what's on the initial Admin Ul page,
and how to configure the interface. In addition, there are pages describing each screen of the Admin Ul:

Getting Assistance shows you how to get more information about the Ul.

Logging explains the various logging levels available and how to invoke them.

Cloud Screens display information about nodes when running in SolrCloud mode.

Core Admin explains how to get management information about each core.

Java Properties shows the Java information about each core.

Thread Dump lets you see detailed information about each thread, along with state information.

® Core-Specific Tools is a section explaining additional screens available for each named core.
® Analysis - lets you analyze the data found in specific fields.
Config - shows the current configuration of the sol r confi g. xm file for the core.
Dataimport - shows you information about the current status of the Data Import Handler.
Documents - provides a simple form allowing you to execute various Solr indexing commands directly from the browser.
Ping - lets you ping a named core and determine whether the core is active.
Plugins/Stats - shows statistics for plugins and other installed components.
Query - lets you submit a structured query about various elements of a core.
Replication - shows you the current replication status for the core, and lets you enable/disable replication.
Schema - describes the schema. xm file for the core.
Schema Browser - displays schema data in a browser window.

Overview of the Solr Admin Ul

Solr features a Web interface that makes it easy for Solr administrators and programmers to view Solr configuration details, run queries and
analyze document fields in order to fine-tune a Solr configuration and access online documentation and other help.

With Solr 4, the Solr nescre (/2 | B metance & system o
Admin has been Solr -
completely redesigned.
The redesign was & Dashboard £ Versions

completed with these | -, g0 D solr-spec 460

benefits in mind: solr-impl 4.6.0 1543363 - simon - 2013-11-19 11:16:33

= Cloud

C)
5 start 11 minutes ago Physical Memory

Swap Space
g =7 lucene-spec 4.6.0
“F Core Admin
® load pages — lucene-impl 4.6.0 1543363 - simon - 2013-11-19 11:05:50
. .| Java Properties
quicker
[access and = Thread Dump
control
functionality
from the
Dashboard
® re-use the 2 vm 9 JVM-Memory
same SerVIets 7| Runtime Oracle Corporation Java HotSpot(TM) 64-Bit Server VM (1.7.0_45 24.45-b08)
that access B Processors 4
Solr-related [Args ~Deollection.configName=collection1
data from an
external
interface, and
° ignore any || Documentation # Issue Tracker gk IRC Channel [Community forum || Solr Query Syntax
differences

File Descriptor Count

-DnumShards=2

between working with one or multiple cores.

Accessing the URL http://hostname:8983/solr/ (if running Jetty on the default port of 8983), will show the main dashboard, which is divided into
two parts.

A left-side of the screen is a menu under the Solr logo that provides the navigation through the screens of the Ul. The first set of links are for
system-level information and configuration and provide access to Logging, Core Admin and Java Properties, among other things. At the end of
this information is a list of Solr cores configured for this instance. Clicking on a core name shows a secondary menu of information and
configuration options for the core specifically. Iltems in this list include the Schema, Config, Plugins, and an ability to perform Queries on indexed
data.

The center of the screen shows the detail of the option selected. This may include a sub-navigation for the option or text or graphical
representation of the requested data. See the sections in this guide for each screen for more details.

Apache Solr Reference Guide 4.6 13

http://hostname:8983/solr/

Configuring the Admin Ul in sol rconfi g. xml

You can configure the Solr Admin Ul by editing the file sol r confi g. xmi .

The <admi n> block in the sol r confi g. xm file determines the default query to be displayed in the Query section of the core-specific pages.
The default is *: *, which is to find all documents. In this example, we have changed the default to the term sol r.

<admi n>
<def aul t Quer y>sol r </ def aul t Query>
</ admi n>

Related Topics

® Configuring solrconfig.xml

Getting Assistance

At the bottom of each screen of the Admin Ul is a set of links that can be used to get more assistance with configuring and using Solr.

| Documentation ﬁ’- Issue Tracker _'lfl IRC Channel | Community forum [z Solr Query Syntax

Assistance icons

These icons include the following links.

Link Description

Documentation | Navigates to the Apache Solr documentation hosted on http://lucene.apache.org/solr/.

Issue Tracker Navigates to the JIRA issue tracking server for the Apache Solr project. This server resides at http://issues.apache.org/jira/br
owse/SOLR.

IRC Channel Connects you to the web interface for Solr's IRC channel. This channel is found on Irc.freenode.net, Port 7000, #solr
channel.

Community Connects you to the Solr community forum, which at the current time is a set of mailing lists and their archives.

forum

Solr Query Navigates to the Apache Wiki page describing the Solr query syntax: http://wiki.apache.org/solr/SolrQuerySyntax.

Syntax

These links cannot be modified without editing the admi n. ht m in the sol r. war that contains the Admin Ul files.

Logging
The Logging page shows messages from Solr's log files.

When you click the link for "Logging", a page similar to the one below will be displayed:

Apache Solr Reference Guide 4.6 14

http://lucene.apache.org/solr/
http://issues.apache.org/jira/browse/SOLR
http://issues.apache.org/jira/browse/SOLR
http://Irc.freenode.net
http://wiki.apache.org/solr/UsingMailingLists
http://wiki.apache.org/solr/SolrQuerySyntax

N
\)

Apache

Solr

& Dashboard

| JUL (org.sif4j.impl JDK14LoggerFactory)
[} Logging
Time Level Logger Message

£+
=f Core Admin
_ ¥
_| Java Properties

= Thread Dump

& collectionl

15:58:19 WARNING SolrCore New index directory detected: old=null new=solr/collectionl/data/index/

The Main Logging Screen

While this example shows logged messages for only one core, if you have multiple cores in a single instance, they will each be listed, with the

level for each.

Selecting a Logging Level

When you select the Level link on the left, you see the
hierarchy of classpaths and classnames for your instance. A
row highlighted in yellow indicates that the class has logging
capabilities. Click on a highlighted row, and a menu will
appear to allow you to change the log level for that class.
Characters in boldface indicate that the class will not be
affected by level changes to root.

For an explanation of the various logging levels, see Configu
ring Logging.

Cloud Screens

When running in SolrCloud mode, an option will appear in
the Admin Ul between Logging and Core Admin for Cloud.
It's not possible at the current time to manage the nodes of

7/
Apache .4.

& Dashboard

() Logging
£ Level

&1 Core Admin

7| Java Properties

£ Thread Dump

collectionl

| JUL (org.sifajimplJDK 14LoggerFactory)

root
global
Javax
™ management
- mbeanserver
org
~ apache
i http
~ impl
client
DefaultHttpClient
conn
i+ DefaultClientConnectionOperator
i+ IdleConnectionHandler
tseem
i+ ConnPoolByRoute
* ThreadSafeClientConnManager

FINEST
FINER
FINE
CONFIG

~ INFO

WARNING
SEVERE
OFF
UNSET

null
INFO
null
INFO
INFO
null
INFO
INFO

the SolrCloud cluster, but you can view them and open the Solr Admin Ul on each node to view the status and statistics for the node and each

core on each node.

Click on the Cloud option in the left-hand navigation, and a small sub-menu appears with options called "Tree", "Graph", "Graph (Radial)" and

"Dump". The default view (which is "Tree") shows a graph of each core and the addresses of each node. This example shows a very simple

two-node cluster with a single core:

Apache Solr Reference Guide 4.6

15

Apache

Solr

@ Dashboard
(=) Logging

== Cloud

A, Graph
¥
Zf Core Admin
*| Java Properties

= Thread Dump

3
‘n\’

shardl ®10.0.1.11
collectionl
shard2 @®10.0.1.13
|=] Documentation 4% Issue Tracker g IRC Channel [Community forum

® |eader
O Active

O Dowr
D Down

O Recovery Failed

|2 Solr Query Syntax

The "Graph (Radial)" option provides a different visual view of each node. Using the same simple two-node cluster, the radial graph view looks

like:

Apache

Solr

& Dashboard
(& Logging

== Cloud

&
4E Graph (Radial)
El

ZE Core Admin

__ Java Properties

= Thread Dump

3
. -\’

10.0.1.1@mardZ

collectionl

shamill0.0.1.11

|=] Documentation * Issue Tracker ,j{& IRC Channel [Community forum

® Leader
O Active

O Recovery Failed

|e2| Solr Query Syntax

The "Tree" option shows a directory structure of the files in ZooKeeper, including cl ust er st at e. j son, configuration files, and other status and
information files. In this example, we show the leader definition files for the core named "“collection1":

f/
7
Apache o,
-

Solr

@ Dashboard
L3 Logging
== Cloud
- Tree
A
*®
1 Core Admin
Java Properties

Thread Dump

@ collectionl

[clusterstate.json

4 [collections

.

collection1

leader_elect

a.

leaders
shard1
shard2

| [configs

., llive_nodes

| loverseer

| loverseer_elect

| |zookeeper

version

aversion
children_count
ctime

cversion

czxid
dataLength
ephemeralOwner
mtime

mzxid

pzxid

1

o

o

o

Sun Nov 04 20:21:08 UTC 2012 (1352060468273)
o

99

105

88608634508214270

Sun Nov 04 20:21:08 UTC 2012 (1352060468273)
99

99

"core":"collectionl",

“node_nam

“base_url

"mbp.local: 7983 solr®,

tp://mbp. local:7983/solr"}

Apache Solr Reference Guide 4.6

16

The final option is "Dump", which allows you to download an XML file with all the ZooKeeper configuration files.

Core Admin

The Core Admin screen lets you manage your cores.

The buttons at the top of the screen let you add a new core, unload the core displayed, rename the currently displayed core, swap the existing
core with one that you specify in a drop-down box, reload the current core, and optimize the current core.

The main display and available actions correspond to the commands used with the CoreAdminHandler, but provide another way of working with
your cores.

Apache "". Add Core W =] Rename | ¥ Swap @ Reload | & Optimize
Solr ~
o r collection1 (2] core
@ Dashboard startTime: 8 minutes ago
(=3 Logging instanceDir: /Applications/solrLatest-cloud1/example-cloud /solr/collectionl/
4 Cloud dataDir: /Applications/solrLatest-cloudl/example-cloud/solr/collectionl/data/
£F Core Admin i index
*l Java Properties JastModified: _
& Thread Dump version: 1
numbDaocs: 0
T maxDec: 0

deletedDacs: -

optimized: 4
current: 4
directory: org.apache.lucene.store. NRTCachingDirectory:NRTCachingDirectory(org.apache.lucene.store. NIOFSDirectory@/ Applications

/solrLatest-cloud1/example-cloud/solr/collectionl /data/index lockFactory=org.apache.lucene.store.NativeFSLockFactory@
671ec07c; maxCacheMB=48.0 maxMergeSizeMB=4.0)

|| Documentation ff Issue Tracker G IRC Channel [Community forum [cs| Solr Query Syntax

Java Properties

The Java Properties screen provides easy access to one of the most essential components of a top-performing Solr systems With the Java
Properties screen, you can see all the properties of the JVM running Salr, including the class paths, file encodings, JVM memory settings,
operating system, and more.

r’,
Apache " awt.toolkit sun.lwawt.macosx LWCToolkit
SOI r ’ file.encoding UTF-8
file.encoding.pkg sun.io
& Dashboard file.separator !
N ftp.nonProxyHosts local|*.local|169.254/16|*.169.254/16
(=) Logging
gopherProxySet false
Cloud
= http.nonProxyHosts local|*.local[169.254/16(%.169.254/16
EF Core Admin Jjava.awt.graphicsenv sun.awt.CGraphicsEnvironment
S Java Properties Java.awt.printerjob sun.lwawt.macosx.CPrinterjob
Thread Dump Jjava.class.path JApplications/solrLatest-cloud1/example-cloud/resources

/Applications/solrLatest-cloud1/example-cloud/lib/serviet-api-3.0.jar

/Applications/solrLatest-cloud1/example-cloud/lib/jetty-continuation-8.1.10.v20130312 jar

/Applications/solrLatest-cloudl/example-cloud/lib/jetty-security-8.1.10.v20130312 jar

/Applications/solrLatest-cloud1/example-cloud/lib/jetty-webapp-8.1.10.¥20130312.jar

/Applications/solrLatest-cloud1/example-cloud/lib/ext/jcl-over-sif4j-1.6.6 jar

/Applications/solrLatest-cloud1/example-cloud/lib/ext/log4j-1.2.16.jar

J/Applications/solrLatest-cloud1/example-cloud/lib/ext/sIf4j-log4j12-1.6.6.jar

/Applications/solrLatest-cloud1/example-cloud/lib/jetty-io-8.1.10.v20130312 jar
Java.class.version 510
Java.endorsed.dirs /Library/Java/JavaVirtualMachines/jdk1.7.0_45.jdk/Contents/Home/jre/lib/endorsed

Java.ext.dirs
/Library/Java/JavaVirtualMachines/jdk1.7.0_45.jdk/Contents/Home/jre/lib/ext

/Network/Library/Java/Extensions

Thread Dump

Apache Solr Reference Guide 4.6 17

The Thread Dump screen lets you inspect the currently active threads on your server. Each thread is listed and access to the stacktraces is
available where applicable. Icons to the left indicate the state of the thread: for example, threads with a green check-mark in a green circle are in
a "RUNNABLE" state. On the right of the thread nhame, a down-arrow means you can expand to see the stacktrace for that thread.

N
N\

Apache

Solr

@ Dashboard

R

= Show all Stacktraces

L3 Loggin

& Logging name cpuTime |
=k Core Admin userTime
~| Java Properties @ DestroyJavaVM (26) 3536.3050ms

3393.5180ms
; i Thread Dump

. pool-1-thread-1(25) 65.8300ms

2 63.7670ms
@ collectionl _

. HashSessionScavenger-0 (23) & 1.3790ms
+ 0.7880ms
Poller SunPKCS11-Darwin (22) 18.1240ms

14.1830ms

& 01p1566301264-21 Acceptor) SockerConnector@0.0.0.0:8983 (21) @ 30.8460ms

29.2750ms

& qtpl566301264-20 (20) 4.4950ms

3.0650ms

& qtpl566301264-19 (19) & 93.9410ms

85.0270ms

When you move your cursor over a thread name, a box floats over the name with the state for that thread. Thread states can be:

State Meaning

NEW A thread that has not yet started.

RUNNABLE A thread executing in the Java virtual machine.

BLOCKED A thread that is blocked waiting for a monitor lock.

WAITING A thread that is waiting indefinitely for another thread to perform a particular action.

TIMED_WAITING | A thread that is waiting for another thread to perform an action for up to a specified waiting time.

TERMINATED A thread that has exited.

When you click on one of the threads that can be expanded, you'll see the stacktrace, as in the example below:

/S
Apache -
a
Solr ~
@ Dashboard
= Hide all Stacktraces
Loggin
&1 Logging name cpuTime /
=k Core Admin userTime
= Java Properties & DestroyjavaVM (26) 3536.3050ms

3393.5180ms
; i Thread Dump

pool-1-thread-1 (25) 65.8300ms

® 63.7670ms
& collectionl

= sun.misc.Unsafe.park(Native Method)
Jjava.util.concurrent.locks.LockSupport.park({LockSupport. java:156)
Jjava.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await
(AbstractQueuedSynchronizer.java:1987)
Jjava.util.concurrent.LinkedBlockingQueue.take(LinkedBlockingQueue.java:399)
java.util.concurrent. ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:947)
java.util.concurrent. ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:907)
java.lang.Thread.run(Thread.java:680)

HashSessionScavenger-0 (23) @ 1.3790ms
E] 0.7880ms

» java.lang.Object.wait{Native Method)
» java.util.TimerThread.mainLoop(Timer.java:509)

Apache Solr Reference Guide 4.6 18

Inspecting a thread

You can also check the Show all Stacktraces button to automatically enable expansion for all threads.

Core-Specific Tools

In the left-hand
navigation bar, you will
see a pull-down menu
titled "Core Selector".
Clicking on the menu
will show a list of Solr
cores, with a search
box that can be used
to find a specific core
(handy if you have a
lot of cores). When you
select a core, such as
collectionl in the
example, a secondary
menu opens under the
core name with the
administration options
available for that
particular core.

After selecting the
core, the central part of
the screen shows
Statistics and other
information about the

7/

'l
Apache -
-

Solr

@ Dashboard
(&) Logging

== Cloud
 Core Admin

~| Java Properties

= Thread Dump

collection1 i

<2 Overview
;

W

= HC

&

18]

|illll Statistics

Last Modified:
Num Docs: O
Max Doc:
Heap Memory
Usage:
Deleted Docs:

oo

o

Version:
Segment Count

o -

Optimized:
Current: ¥

2 Replication (Master)

Master (Searching) 0

Master (Replicable) -

Admin Extra

1

65 bytes

= Instance

CWD:
Instance:
Data:

Index:

Impl:

|| Documentation 4 Issue Tracker

fApplications/solrLatest-cloud1/example-cloud

fApplications fsolrLatest-cloud 1 /fexample-cloud solr/collection1
fApplications /solrLatest-cloud1/example-cloud /solr
fcollectionl /data

fApplications /solrLatest-cloud 1/example-cloud/solr/collectionl
/data/index

org.apache.solr.core.NRTCachingDirectoryFactory

g‘i IRC Channel -] Community forum « Solr Query Syntax

core you chose. You can define a file called admi n- extra. ht m that includes links or other information you would like to display in the "Admin
Extra" part of this main screen.

On the left side, under the core name, are links to other screens that display information or provide options for the specific core chosen. The
core-specific options are listed below, with a link to the section of this Guide to find out more:

Analysis Screen

Analysis - lets you analyze the data found in specific fields.
Config - shows the current configuration of the sol r conf i g. xmi file for the core.
Dataimport - shows you information about the current status of the Data Import Handler.
Documents - provides a simple form allowing you to execute various Solr indexing commands directly from the browser.
Ping - lets you ping a named core and determine whether the core is active.
Plugins/Stats - shows statistics for plugins and other installed components.
Query - lets you submit a structured query about various elements of a core.
Replication - shows you the current replication status for the core, and lets you enable/disable replication.
Schema - describes the schenma. xm file for the core.

Schema Browser - displays schema data in a browser window.

The Analysis screen lets you inspect how data will be handled according to the field, field type and dynamic rule configurations found in
schema. xm . You can analyze how content would be handled during indexing or during query processing and view the results separately or at
the same time. Ideally, you would want content to be handled consistently, and this screen allows you to validate the settings in the field type or

field analysis chains.

Enter content in one or
both boxes at the top
of the screen, and then
choose the field or field
type definitions to use
for analysis.

The standard output
(shown if "Verbose
Output" is not
checked) will display
the step of the analysis
and the output based
on the current settings.
If you click the
Verbose Output
check box, you see

Apache Solr Reference Guide 4.6

19

more information,

including Apache "0‘ Field Value (Index)
transformations to the | Solr
input (such as, convert| e oo
to lower case, strip
extra characters, etc.)
and the bytes, type
and detailed position
information. The
information displayed =
will vary depending on
the settings of the field| &

or field type. Each step|

of the process is Z‘“’““
displayed in a separate|
section, with an 8
abbreviation for the
tokenizer or filter that
is applied in that step.
Hover or click on the
abbreviation, and you'll
see the name and path

(2 Logging
&¥ core Admin
7| Java Properties

£ Thread Dump

(7] collection1

| Running is asport.

Analyse Fieldname / FieldType:

text

Running

52 75 6e 6e 69 62 67]
0

7

<ALPHANUM>

1

Running
[52 75 6e 60 69 62 67
1

0

7

<ALPHANUM>

running
[72 75 6e 66 69 68 67
1

0

7

<ALPHANUM>

running
[72 75 6606962 67]
1

0

7

<ALPHANUM>

is
169731

B

10
<ALPHANUM>
2

<ALPHANUM>
3

sport
[73706(7274)
13

18
<ALPHANUM>
4

sport
[7370667274]
4

13

18
<ALPHANUM>

sport
[73706(7274)
4

13

18
<ALPHANUM>

sport
[3706(7274)
4

13

18
<ALPHANUM>

Field Value (Query)
Running is a sport

Running

5275 6e 6 69 6e 67]
o

7

<ALPHANUM >

1

Running
5275 6e 62 69 62 67]
1

<ALPHANUM >

[

7

1

Running

(5275 6e 62 69 60 67)
1

o

7

<ALPHANUM >

1

running
(7275 6e 62 69 60 67]
1
0
7

is
6973

8

10
<ALPHANUM>
2

is
6973

1
<ALPHANUM>
8

10

2

<ALPHANUM>
3

a
61

1
<ALPHANUM>
11

12

3

sport
[73706F7274)
13

18
<ALPHANUM>
4

sport
[73706F7274)
1
<ALPHANUM>
13

18

4

sport
[73706f7274)
4

13

18
<ALPHANUM>
1

sport
73 70667274]
4

13

18

of the tokenizer or
filter.

In the examples on the right (click either screenshot for a larger image), several transformations are applied to the text string "Running is a sport.”

We've used the field "text", which has rules that remove the "is" and "a" and the word "running" has been changed to its basic form, "run". This is
because we have defined the field type, t ext _en in this scenario, to remove stop words (small words that usually do not provide a great deal of

context) and "stem" terms when possible to find more possible matches (this is particularly helpful with plural forms of words). If you click the

question mark next to the Analyze Fieldname/Field Type pull-down menu, the Schema Browser window will open, showing you the settings for

the field specified.

The section Understanding Analyzers, Tokenizers, and Filters describes in detail what each option is and how it may transform your data and the

section Running Your Analyzer has specific examples for using the Analysis screen.

Config Screen

The Config screen shows you the current sol rconfi g. xm for the core you selected. This screenshot shows the beginning of the Query section

of sol rconfig. xnl.

7/
Apache .

Solr

& Dashboard

<query>

(=] Logging
E Core Admin
3 Java Properties

= Thread Dump

"] collection1

£

o2 Config

e E

<maxBooleanClauses>1024</maxBooleanClauses>

The sol rconfi g. xm file cannot be edited with this screen, so a text editor of some kind must be used. While the schema. xm defines the

structure of your content, sol r conf i g. xm defines the behavior of Solr as it indexes content and responds to queries. Many of the options

defined with sol r confi g. xm are described throughout the rest of this Guide. In particular, you will want to review these sections:

® Indexing and Basic Data Operations
® Searching
® The Well-Configured Solr Instance

Apache Solr Reference Guide 4.6

20

Dataimport Screen

The Dataimport screen
shows the
configuration of the
DatalmportHandler
(DIH) and allows you
to start indexing data,
as defined by the
options selected on the
screen and defined in
the configuration file.
Click the screenshot
on the right to see a
larger image of this
screen.

The configuration file
defines the location of
the data and how to
perform the SQL

7
Apache ‘
-

Solr
& Dashboard
(2 Logging
& Core Admin
Java Properties

Thread Dump

(7] db

+ | Dataimport

rss

£ [dataimport

Command
full-import K|
Verbose
Clean
Commit
Optimize

Entity

Start, Rows
0 10

Custom Parameters
keyl=val1&key2=val2

El Dataimport Configuration U Reload

<dataConfig>
<dataSource driver="org.hsqldb.jdbcDriver" url='jdbc:hsqldb:./example-DIH/hsqldb/ex" user="sa" />
<docunment>
<entity name="item" query="select * from item"
deltaguery="select id from item where last_modified > 'S{dataimporter.last_index_time}'">

<field column="NAME" name="name" />

<entity name="feature"
query="select DESCRIPTION from FEATURE where ITEM ID='${item.ID}""
FEATURE where last modified > '${dataimporter.last_index time}'"

parentDeltaQuery="select ID from item where ID=${feature.ITEM_ID}">
<field name="features" column="DESCRIPTION" />

</entity>

<entity name="item_category"
query="select CATEGORY_ID from item category where ITEM ID='${item.ID}'"
ect ITEM_ID, CATEGORY_ID from item category where last_modified > '§{dataimporter.last_index time} "

deltaguery="s.

parentDeltaQuery="select ID from item where ID=${item category.ITEM

<entity name="category”

query="select DESCRIPTION from category where ID = '§{item_category.CATEGORY_ID}'"

c

deltaguery="select ID from category where last_modified > '${dataimporter.last_index_time}'"
parentDeltaQuery="select ITEM ID, CATEGORY_ID from item category where CATEGORY_ID=${category.ID}">
<field column="description” name="cat’ />
</entity>
<fentity>
</entity>
</document>
</dataConfig>

queries for the data

you want. The options on the screen control how the data is imported to Solr. For more information about data importing with DIH, see the section
on Uploading Structured Data Store Data with the Data Import Handler.

Documents Screen

The Documents screen provides a simple form allowing you to execute various Solr indexing commands in a variety of formats directly from the

browser.

The screen allows you
to:

¢ Copy
documents in
JSON, CSV or
XML and
submit them to
the index

® Upload
documents (in
JSON, CSV or
XML)

® Construct
documents by
selecting fields|
and field
values

The first step is to
define the
RequestHandler to use
(aka, 'qt). By default

[updat e will be
defined. To use Solr
Cell, for example,

change the request
handler to
/updat e/ extract.

Apache

Solr

@ Dashboard

& Logging

=f Core Admin

J
N\

Request-Handler (gt}
Jupdate

Document Type
JSON

Document(s)

Status: success
Response:
{
"responseHeader”: {
i "status": 0O,
"QTime": 31
}

{"id":"change.me","title":"change.me"} }

3 Java Properties

= Thread Dump

collectionl

- B

&

[Documents

& @

f

Commit Within
1000

Overwrite
true

Boost
1.0

Submit Document

=] Decumentation

Then choose the Document Type to define the type of document to load. The remaining parameters will change depending on the document type

selected.

JSON

When using the JSON document type, the functionality is similar to using a requestHandler on the command line. Instead of putting the
documents in a curl command, they can instead be input into the Document entry box. The document structure should still be in proper JSON

format.

Then you can choose when documents should be added to the index (Commit Within), whether existing documents should be overwritten with
incoming documents with the same id (if this is not true, then the incoming documents will be dropped), and, finally, if a document boost should

Apache Solr Reference Guide 4.6

21

be applied.

This option will only add or overwrite documents to the index; for other update tasks, see the Solr Command option.

Csv

When using the CSV document type, the functionality is similar to using a requestHandler on the command line. Instead of putting the documents
in a curl command, they can instead be input into the Document entry box. The document structure should still be in proper CSV format, with
columns delimited and one row per document.

Then you can choose when documents should be added to the index (Commit Within), and whether existing documents should be overwritten
with incoming documents with the same id (if this is not true, then the incoming documents will be dropped).

Document Builder

The Document Builder provides a wizard-like interface to enter fields of a document

File Upload

The File Upload option allows choosing a prepared file and uploading it. If using only / updat e for the Request-Handler option, you will be limited
to XML, CSV, and JSON.

However, to use the ExtractingRequestHandler (aka Solr Cell), you can modify the Request-Handler to / updat e/ ext r act . You must have this
defined in your sol r conf i g. xm file, with your desired defaults. You should also update the & i t er al . i d shown in the Extracting Req.
Handler Params so the file chosen is given a unique id.

Then you can choose when documents should be added to the index (Commit Within), and whether existing documents should be overwritten
with incoming documents with the same id (if this is not true, then the incoming documents will be dropped).

Solr Command

The Solr Command option allows you use XML or JSON to perform specific actions on documents, such as defining documents to be added or
deleted, updating only certain fields of documents, or commit and optimize commands on the index.

The documents should be structured as they would be if using / updat e on the command line.

XML

When using the XML document type, the functionality is similar to using a requestHandler on the command line. Instead of putting the documents
in a curl command, they can instead be input into the Document entry box. The document structure should still be in proper Solr XML format, with
each document separated by <doc> tags and each field defined.

Then you can choose when documents should be added to the index (Commit Within), and whether existing documents should be overwritten
with incoming documents with the same id (if this is not true, then the incoming documents will be dropped).

This option will only add or overwrite documents to the index; for other update tasks, see the Solr Command option.

Related Topics

® Uploading Data with Index Handlers
® Uploading Data with Solr Cell using Apache Tika

Ping
Choosing Ping under a core name issues a pi ng request to check whether a server is up.

Ping is configured using a r equest Handl er in the sol rconfi g. xni file:

Apache Solr Reference Guide 4.6 22

<!-- ping/heal thcheck -->
<r equest Handl er nanme="/adm n/ pi ng" cl ass="sol r. Pi ngRequest Handl er " >
<l st name="invariants">
<str name="q">sol r pi ngquery</str>
</lst>
<l st name="defaul ts">
<str name="echoParans">al | </str>
</lst>
<l-- An optional feature of the PingRequestHandler is to configure the
handl er with a "heal thcheckFile" which can be used to enabl e/ di sabl e
t he Pi ngRequest Handl er.
relative paths are resol ved against the data dir
-->
<l-- <str nane="heal t hcheckFi |l e">server-enabl ed. txt</str> -->
</ request Handl er >

The Ping option doesn't open a page, but the status of the request can be seen on the core overview page shown when clicking on a collection
name. The length of time the request has taken is displayed next to the Ping option, in milliseconds.

Plugins & Stats Screen

The Plugins screen shows information and statistics about Solr's status and performance. You can find information about the performance of
Solr's caches, the state of Solr's searchers, and the configuration of searchHandlers and requestHandlers.

Choose an area of interest on the right, and then drill down into more specifics by clicking on one of the names that appear in the central part of
the window. In this example, we've chosen to look at the Searcher stats, from the Core area:

poacne (25 | Weace © Searcher@49b63917 main
pache
a1 -
Solr = mox o core
", HIGHLIGHTING class: «collectionl
version: 1.0

& Dashboard B OTHER !

L description: SolrCore
(=] Logging

#~' QUERYHANDLER src: SURL: hups://svn.apache.org/repos fasf/lucene/dev/branches /lucene_sclr_4_6/solr/core/src/javajorg/apache/solr/core/

<= Cloud QUERYPARSER SolrCore.java $
&F Core Admin T UPDATEHANDLER stats: coreName: collectionl
3| Java Properties startTime: 2013-11-23T14:46:24.439Z

Thread Dump @ Watch Changes refCount: 2
o © Refresh val instanceDir: /Applications/solrLatest-cloud1/example-cloud/solr/collection1/

efresh Values

— indexDir: /Applications/solrLatest-cloud1/example-cloud/solr/collection1/data/index/

collection -
aliases: collectionl

by collection: collection1

Ii shard shardl

& © searcher

o

=

iﬂ (T L3 /1 B3T3 |-] Documentation ¥ Issue Tracker 3;& IRC Channel [Community forum |«| Solr Query Syntax

£

1]

Searcher Statistics

The display is a snapshot taken when the page is loaded. You can get updated status by choosing to either Watch Changes or Refresh Values.
Watching the changes will highlight those areas that have changed, while refreshing the values will reload the page with updated information.

Query Screen

You can use Query, shown under the name of each core, to submit a search query to a Solr server and analyze the results. In the example in the
screenshot, a query has been submitted, and the screen shows the query results sent to the browser as JSON.

The query was sent to
a core named

"collectionl". We used
Solr's default query for
this screen (as defined

Apache Solr Reference Guide 4.6 23

insol rconfig.xm),
which is *: *. This 1/

query will find all Apache .- Ftequest-Hand\er (qt) -
records in the index for| §olyr fselect ‘

this core. We kept the common “responseHeader”: {
other defaults, bu_t the & Dashboard q "status": 0,

table below explains "QTime": 7,

these options, which (2 Logging ' “parans’: {

are also covered in Z Core Admin “indemt": “true”,
detail in later parts of — g e,

- *1373998634785"
Ba et *json”
1

this Guide. 2| Java Properties fa

i = Thread Dump
The response is shown sort

to the right of the form.

Requests to Solr are collectionl | start, rows re:::::ﬁnd{ -
] \ . - fl "docs": [
submitted is shown in I I
light typ(_e above_ the i o *id*: "GBLBO30TEST",
results; if you click on "name": "Test with some GBLBO30 encoded characters®,

“features": [
"No accents here”,

this it will open a new
browser window with ¥ Raw Query Parameters
just this request and = VEE—TIEE",

response (without the "This is a feature (translated)",

wt
rest of the Solr Admin & son < JRAxEERELEL
U|). The rest of the - Query . This document 1s very shiny (translated)
response is shown in indent S
JSON, which is part of U debugquery p:iz: CG "o, USD"
the request (see the = _ st i
wt =j son part at the = [dismax " version ": 1440741985651523600
end). [edismax 1,
O {
The response has at O facet "id": "SP2SLAN”,

"name”: "Samsung SpinPoint P120 SP2S14N - hard drive - 250 GB - ATA-133",

“manu”: “Samsung Electronics Co. Ltd.",

least two sections, but

[spatial
may have several

) Ll L

more depending on the
options chosen. The two sections it always has are the r esponseHeader and the r esponse. The r esponseHeader includes the status of the
search (st at us), the processing time (QTi ne), and the parameters (par ans) that were used to process the query.

The r esponse includes the documents that matched the query, in doc sub-sections. The fields return depend on the parameters of the query
(and the defaults of the request handler used). The number of results is also included in this section.

This screen allows you to experiment with different query options, and inspect how your documents were indexed. The query parameters

available on the form are some basic options that most users want to have available, but there are dozens more available which could be simply
added to the basic request by hand (if opened in a browser). The table below explains the parameters available:

Field Description

Request-handler = Specifies the query handler for the request. If a query handler is not specified, Solr processes the response with the
standard query handler.

q The query event. See Searching for an explanation of this parameter.

fq The filter queries. See Common Query Parameters for more information on this parameter.

sort Sorts the response to a query in either ascending or descending order based on the response's score or another specified
characteristic.

start, rows start is the offset into the query result starting at which documents should be returned. The default value is 0, meaning

that the query should return results starting with the first document that matches. This field accepts the same syntax as the
start query parameter, which is described in Searching. r ows is the number of rows to return.

fl Defines the fields to return for each document. You can explicitly list the stored fields you want to have returned by
separating them with either a comma or a space. In Solr 4, the results of functions can also be included in the f | list.

wit Specifies the Response Writer to be used to format the query response. Defaults to XML if not specified.

indent Click this button to request that the Response Writer use indentation to make the responses more readable.

debugQuery Click this button to augment the query response with debugging information, including "explain info" for each document
returned. This debugging information is intended to be intelligible to the administrator or programmer.

dismax Click this button to enable the Dismax query parser. See The DisMax Query Parser for further information.

edismax Click this button to enable the Extended query parser. See The Extended DisMax Query Parser for further information.

Apache Solr Reference Guide 4.6 24

hi

facet
information.

spatial

spellcheck
ell Checking for more information.

Related Topics

® Searching

Replication Screen

The Replication screen shows you the current replication state for the named core you have specified. In Solr, replication is for the index only.

Click this button to enable highlighting in the query response. See Highlighting for more information.

Enables faceting, the arrangement of search results into categories based on indexed terms. See Faceting for more

Click to enable using location data for use in spatial or geospatial searches. See Spatial Search for more information.

Click this button to enable the Spellchecker, which provides inline query suggestions based on other, similar, terms. See Sp

SolrCloud has supplanted much of this functionality, but if you are still using index replication, you can see the replication state, as shown below:

P
'/
Apache "

Solr ~

@ Dashboard
& Refresh Status] Index

(=] Logging _________________ Master:
& Core Admin Disable Replication

.| Java Properties # Settings

= Thread Dump (Master):

(%] collection1
=

pe

&

Replication

LT

B

1349981878137 3 28.75 KB

replication enable: +

replicateAfter: commit

In this example, replication is enabled and will be done after each commit. Because this server is the Master, it is showing only the config settings
for the master. On the master, you can disable replication by clicking the Disable Replication button.

In Solr, the replication is initiated by the slave servers so there is more value by looking at the Replication screen on the slave nodes. This

screenshot shows the Replication screen for a slave:

“I; Replication

rr,
Apache "‘ @ Refresh Status Y herations:
Sol r By Replicate now
[index
@ Dashboard % Disable Polling Master: 0 1 65 bytes
= Logging Slave: 0 1 65 bytes
<} Core Admin
Java Properties A Settings: master url: http://localhost: 7888/solr/collection1
Thread Dump polling enable: «
%] collectionl R Settings
= (Master):
replication enable: o
replicateAfter: commit
confFiles:
admin-extra.html, admi bottom.html, admi p.html, elevate.xml, LucidStemRules_en.txt,

protwords.txt, schema.xml, solrconfig.xml, stopwords.txt, synonyms. txt

Apache Solr Reference Guide 4.6

25

You can click the Refresh Status button to show the most current replication status, or choose to get a new snapshot from the master server.

More details on how to configure replication is available in the section called Index Replication.

Schema Screen

The Schema option displays the schena. xmi file, a configuration file that describes the data to be indexed and searched.

Apache

Solr

@ Dashboard

v
| l“

(=) Logging

=f Core Admin
<field
<field r

'id" type="string" indexed="true" stored="true" reguired="true" multivalued="false" />

| Java Properties ku" type="text_en_splitting tight" indexed="true" stored="true" omitNorms="true"/>

— Thread Dump <field name="name" type="text_general" indexed="true" stored="true"/>
<field name="manu" type="text general" indexed="true" stored="true" omitNorms="true"/>

<field name="cat" type="string" indexed="true" stored="true"' multivalued="true"/>

e h
[Z] collectionl <field name="features' type="text_general" indexed='"true" stored="true" multivalued="true'/>
- <field name="includes" type="text_ general" indexed="true" stored="true" termVectors="true" termFositions="true
& <field name="weight" type="float" indexed="true" stored="true"/>
P <field name="price" type="float" indexed="true" stored="true"/>
chema
= <field name="popularity" type="int" indexed="true" stored="true" />
g5 <field name="inStock" type="boolean" indexed="true" stored="true" />
<field name="store" type="location" indexed="true" stored="true"/>
T

The schema. xn file cannot be edited from this screen, but it provides easy access to view the file if needed. Editing is done by modifying the file
with a text editor. As described in detail in a later section, the schena. xnm allows you to define the types of data in your content (field types), the
fields your documents will be broken into, and any dynamic fields that should be generated based on patterns of field names in the incoming
documents. These options are described in the section called Documents, Fields, and Schema Design.

This screen is related to the Schema Browser Screen, in that they both display information from the schema, but the Schema Browser provides a
way to drill into the analysis chain and displays linkages between field types, fields, and dynamic field rules.

Schema Browser Screen

The Schema Browser screen lets you see schema data in a browser window. If you have accessed this window from the Analysis screen, it will
be opened to a specific field, dynamic field rule or field type. If there is nothing chosen, use the pull-down menu to choose the field or field type.

Apache Solr Reference Guide 4.6 26

7
Apache ‘- Lext T
Sol r 4 Field Field-Type: org.apache.solr.schema. TextField
el
Pl Gap: 100
text LAY
Docs: 21
& Dashboard Copied from
) author Indexed Tokenized Multivalued
=] Logging N
cat Properties o « ¥4
- i ntent
ZE Core Admin content Schema v v v
3 Java Properti content_type
.| Java Praperties
description Index
= Thread Dump features
includes @) Index Analyzer: org.apache.solr.analysis.TokenizerChain &
keywords
collectionl % manu
(@) Query Analyzer: org.apache.solr.analysis.TokenizerChain &
A name
Gl . R
resourcename
title @ Load Term Info 10 Top-Terms: (2 Histogram
£ ur electronics 22
= inc £
— 27
and
o8]
ush
lcd -
7 notes
2.0
|| JSchema Browser memory
& one
X
|] Documentation Issue Tracker gk IRC Channel [Community forum [of Solr Query Syntax

The screen provides a great deal of useful information about each particular field. In the example above, we have chosen the t ext field. On the
right side of the center window, we see the field name, and a list of fields that populate this field because they are defined to be copied to the

t ext field. Click on one of those field names, and you can see the definitions for that field. We can also see the field type, which would allow us
to inspect the type definitions as well.

In the left part of the center window, we see the field type again, and the defined properties for the field. We can also see how many documents
have populated this field. Then we see the analyzer used for indexing and query processing. Click the icon to the left of either of those, and you'll
see the definitions for the tokenizers and/or filters that are used. The output of these processes is the information you see when testing how
content is handled for a particular field with the Analysis Screen.

Under the analyzer information is a button to Load Term Info. Clicking that button will show the top N terms that are in the index for that field.
Click on a term, and you will be taken to the Query Screen to see the results of a query of that term in that field. If you want to always see the
term information for a field, choose Autoload and it will always appear when there are terms for a field. A histogram shows the number of terms
with a given frequency in the field.

Apache Solr Reference Guide 4.6 27

Documents, Fields, and Schema Design

This section discusses how Solr organizes its data into documents and fields, as well as how to work with the Solr schema file, schema. xnmi . It
includes the following topics:

Overview of Documents, Fields, and Schema Design: An introduction to the concepts covered in this section.

Solr Field Types: Detailed information about field types in Solr, including the field types in the default Solr schema.
Defining Fields: Describes how to define fields in Solr.

Copying Fields: Describes how to populate fields with data copied from another field.

Dynamic Fields: Information about using dynamic fields in order to catch and index fields that do not exactly conform to other field definitions in
your schema.

Schema API: Use curl commands to read various parts of a schema or create new fields and copyField rules.

Other Schema Elements: Describes other important elements in the Solr schema: Unique Key, Default Search Field, and the Query Parser
Operator.

Putting the Pieces Together: A higher-level view of the Solr schema and how its elements work together.
DocValues: Describes how to create a docValues index for faster lookups.

Schemaless Mode: Automatically add previously unknown schema fields using value-based field type guessing.

Overview of Documents, Fields, and Schema Design

The fundamental premise of Solr is simple. You give it a lot of information, then later you can ask it questions and find the piece of information you
want. The part where you feed in all the information is called indexing or updating. When you ask a question, it's called a query.

One way to understand how Solr works is to think of a loose-leaf book of recipes. Every time you add a recipe to the book, you update the index
at the back. You list each ingredient and the page number of the recipe you just added. Suppose you add one hundred recipes. Using the index,
you can very quickly find all the recipes that use garbanzo beans, or artichokes, or coffee, as an ingredient. Using the index is much faster than

looking through each recipe one by one. Imagine a book of one thousand recipes, or one million.

Solr allows you to build an index with many different fields, or types of entries. The example above shows how to build an index with just one field,
i ngredi ents. You could have other fields in the index for the recipe's cooking style, like Asi an, Caj un, or vegan, and you could have an index
field for preparation times. Solr can answer questions like "What Cajun-style recipes that have blood oranges as an ingredient can be prepared in
fewer than 30 minutes?"

The schema is the place where you tell Solr how it should build indexes from input documents.

How Solr Sees the World

Solr's basic unit of information is a document, which is a set of data that describes something. A recipe document would contain the ingredients,
the instructions, the preparation time, the cooking time, the tools needed, and so on. A document about a person, for example, might contain the
person's name, biography, favorite color, and shoe size. A document about a book could contain the title, author, year of publication, number of

pages, and so on.

In the Solr universe, documents are composed of fields, which are more specific pieces of information. Shoe size could be a field. First name and
last name could be fields.

Fields can contain different kinds of data. A name field, for example, is text (character data). A shoe size field might be a floating point number so
that it could contain values like 6 and 9.5. Obviously, the definition of fields is flexible (you could define a shoe size field as a text field rather than
a floating point number, for example), but if you define your fields correctly, Solr will be able to interpret them correctly and your users will get
better results when they perform a query.

You can tell Solr about the kind of data a field contains by specifying its field type. The field type tells Solr how to interpret the field and how it can
be queried.

When you add a document, Solr takes the information in the document's fields and adds that information to an index. When you perform a query,
Solr can quickly consult the index and return the matching documents.

Field Analysis

Field analysis tells Solr what to do with incoming data when building an index. A more accurate name for this process would be processing or
even digestion, but the official name is analysis.

Apache Solr Reference Guide 4.6 28

Consider, for example, a biography field in a person document. Every word of the biography must be indexed so that you can quickly find people
whose lives have had anything to do with ketchup, or dragonflies, or cryptography.

However, a biography will likely contains lots of words you don't care about and don't want clogging up your index—words like "the", "a", "to", and
so forth. Furthermore, suppose the biography contains the word "Ketchup", capitalized at the beginning of a sentence. If a user makes a query for
"ketchup”, you want Solr to tell you about the person even though the biography contains the capitalized word.

The solution to both these problems is field analysis. For the biography field, you can tell Solr how to break apart the biography into words. You
can tell Solr that you want to make all the words lower case, and you can tell Solr to remove accents marks.

Field analysis is an important part of a field type. Understanding Analyzers, Tokenizers, and Filters is a detailed description of field analysis.

Solr Field Types

The field type defines how Solr should interpret data in a field and how the field can be queried. There are many field types included with Solr by
default, and they can also be defined locally.

Topics covered in this section:
® Field Type Definitions and Properties
® Field Types Included with Solr
® Working with Currencies and Exchange Rates
® Working with Dates
® Working with Enum Fields
® Working with External Files and Processes

® Field Properties by Use Case

Related Topics

® SchemaXML-DataTypes
® FieldType Javadoc

Field Type Definitions and Properties

A field type includes four types of information:
The name of the field type
An implementation class hame

L]
°
® |f the field type is Text Fi el d, a description of the field analysis for the field type
® Field attributes

Field Type Definitions in schema. xmni

Field types are defined in schenma. xm , with the t ypes element. Each field type is defined between f i el dType elements. Here is an example
of a field type definition for a type called t ext _general :

Apache Solr Reference Guide 4.6 29

http://wiki.apache.org/solr/SchemaXml#Data_Types
http://lucene.apache.org/solr/api/solr-core/org/apache/solr/schema/FieldType.html

<fiel dType nane="text_general" class="solr. TextFi el d" positionlncrementGp="100">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt
enabl ePosi ti onl ncrenents="true" />
<I-- in this exanple, we will only use synonyns at query tine
<filter class="solr.SynonynFilterFactory" synonyns="index_synonyns.txt"
i gnor eCase="true" expand="fal se"/>
-->
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
<anal yzer type="query">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt
enabl ePosi tionl ncrenments="true" />
<filter class="solr.SynonynFilterFactory" synonyns="synonymns.txt"
i gnor eCase="true" expand="true"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

The first line in the example above contains the field type name, t ext _gener al , and the name of the implementing class, sol r. Text Fi el d.
The rest of the definition is about field analysis, described in Understanding Analyzers, Tokenizers, and Filters.

The implementing class is responsible for making sure the field is handled correctly. In the class names in schema. xni |, the string sol r is

shorthand for or g. apache. sol r. schena or or g. apache. sol r. anal ysi s. Therefore, sol r. Text Fi el d is really
org. apache. sol r. schema. Text Fi el d. .

Field Type Properties

The field type cl ass determines most of the behavior of a field type, but optional properties can also be defined. For example, the following
definition of a date field type defines two properties, sort M ssi ngLast and omi t Nor ns.

<fiel dType nane="date" class="solr. DateField"
sort M ssi ngLast="true" omitNornms="true"/>

The properties that can be specified for a given field type fall into three major categories:

® Properties specific to the field type's class.

® General Properties Solr supports for any field type.

® Field Default Properties that can be specified on the field type that will be inherited by fields that use this type instead of the default
behavior.

General Properties

Property Description Values

positionincrementGap For multivalued fields, specifies a distance between multiple values, which prevents spurious phrase integer
matches

autoGeneratePhraseQueries = For text fields. If true, Solr automatically generates phrase queries for adjacent terms. If false, terms true or
must be enclosed in double-quotes to be treated as phrases. false

docValuesFormat Defines a custom DocVal uesFor nat to use for fields of this type. This requires that a schema-aware n/a

codec, such as the SchemaCodecFact ory has been configured in solrconfig.xml.

postingsFormat Defines a custom Post i ngsFor mat to use for fields of this type. This requires that a schema-aware n/a
codec, such as the SchemaCodecFact ory has been configured in solrconfig.xml.

Apache Solr Reference Guide 4.6 30

.ﬁ. Lucene index back-compatibility is only supported for the default codec. If you choose to customize the post i ngsFor nat or
docVal uesFor mat in your schema.xml, upgrading to a future version of Solr may require you to either switch back to the
default codec and optimize your index to rewrite it into the default codec before upgrading, or re-build your entire index from
scratch after upgrading.

Field Default Properties

Property Description Values
indexed If true, the value of the field can be used in queries to retrieve matching documents true or
false
stored If true, the actual value of the field can be retrieved by queries true or
false
docValues If true, the value of the field will be put in a column-oriented DocValues structure true or
false
sortMissingFirst Control the placement of documents when a sort field is not present. As of Solr 3.5, these work for all true or
sortMissingLast numeric fields, including Trie and date fields. false
multiValued If true, indicates that a single document might contain multiple values for this field type true or
false
omitNorms If true, omits the norms associated with this field (this disables length normalization and index-time true or
boosting for the field, and saves some memory). Defaults to true for all primitive (non-analyzed) field false
types, such as int, float, data, bool, and string. Only full-text fields or fields that need an index-time boost
need norms.
omitTermFreqAndPositions ' If true, omits term frequency, positions, and payloads from postings for this field. This can be a true or
performance boost for fields that don't require that information. It also reduces the storage space false

required for the index. Queries that rely on position that are issued on a field with this option will silently
fail to find documents. This property defaults to true for all fields that are not text fields.

omitPositions Similar to oni t Ter nFr eqAndPosi t i ons but preserves term frequency information true or
false
termVectors These options instruct Solr to maintain full term vectors for each document, optionally including the true or
termPositions position and offset information for each term occurrence in those vectors. These can be used to false
termOffsets accelerate highlighting and other ancillary functionality, but impose a substantial cost in terms of index

size. They are not necessary for typical uses of Solr

Field Types Included with Solr

The following table lists the field types that are available in Solr. The or g. apache. sol r. schema package includes all the classes listed in this
table.

Class Description

BCDiIntField Binary-coded decimal (BCD) integer. BCD is a relatively inefficient encoding that offers the benefits of
quick decimal calculations and quick conversion to a string.

BCDLongField Binary-coded decimal long integer.

BCDStrField Binary-coded decimal string.

BinaryField Binary data.

BoolField Contains either true or false. Values of "1", "t", or "T" in the first character are interpreted as true. Any

other values in the first character are interpreted as false.
ByteField Contains an array of bytes. deprecated, use TrielntField instead

CollationField Supports Unicode collation for sorting and range queries. ICUCollationField is a better choice if you can
use ICU4J. See the section Unicode Collation.

CurrencyField Supports currencies and exchange rates. See the section Working with Currencies and Exchange
Rates.
DateField Represents a point in time with millisecond precision. See the section Working with Dates.

Apache Solr Reference Guide 4.6 31

DoubleField Double (64-bit IEEE floating point).
ExternalFileField Pulls values from a file on disk. See the section Working with External Files and Processes.
EnumField Allows defining an enumerated set of values which may not be easily sorted by either alphabetic or

numeric order (such as a list of severities, for example). This field type takes a configuration file, which
lists the proper order of the field values. See the section Working with Enum Fields for more

information.
FloatField Floating point (32-bit IEEE floating point).
ICUCollationField Supports Unicode collation for sorting and range queries. See the section Unicode Collation.
IntField Integer (32-bit signed integer).
LatLonType Spatial Search: a latitude/longitude coordinate pair. The latitude is specified first in the pair.
LongField Long integer (64-bit signed integer).
PointType Spatial Search: An arbitrary n-dimensional point, useful for searching sources such as blueprints or

CAD drawings.

PreAnalyzedField Provides a way to send to Solr serialized token streams, optionally with independent stored values of a
field, and have this information stored and indexed without any additional text processing. Useful if you
want to submit field content that was already processed by some existing external text processing
pipeline (e.g. tokenized, annotated, stemmed, inserted synonyms, etc.), while using all the rich
attributes that Lucene's TokenSt r eamprovides via token attributes.

RandomSortField Does not contain a value. Queries that sort on this field type will return results in random order. Use a
dynamic field to use this feature.

ShortField Short integer. deprecated, use TrielntField instead

SortableDoubleField The Sortable fields provide correct numeric sorting. If you use the plain types (Doubl eFi el d,

I nt Fi el d, and so on) sorting will be lexicographical instead of numeric.

SortableFloatField Numerically sorted floating point.

SortablelntField Numerically sorted integer.

SortableLongField Numerically sorted long integer.

SpatialRecursivePrefixTreeFieldType (RPT for short) Spatial Search: Accepts latitude comma longitude strings or other shapes in WKT
format.

StrField String (UTF-8 encoded string or Unicode).

TextField Text, usually multiple words or tokens.

TrieDateField Date field accessible for Lucene TrieRange processing.

TrieDoubleField Double field accessible Lucene TrieRange processing.

TrieField If this type is used, a "type" attribute must also be specified, with a value of either: integer, long, float,

double, date. Using this field is the same as using any of the Trie fields.

TrieFloatField Floating point field accessible Lucene TrieRange processing.

TrielntField Int field accessible Lucene TrieRange processing.

TrieLongField Long field accessible Lucene TrieRange processing.

UUIDField Universally Unique Identifier (UUID). Pass in a value of "NEW" and Solr will create a new UUID.

The Mul ti Ter mAwar eConponent has been added to relevant sol r . Text Fi el d entries in schema. xm (e.g., wildcards, regex, prefix, range,
etc.) to allow automatic lowercasing for multi-term queries.

Further, you can now optionally specify anal yzer Type="mnul ti terni in schema. xm ; if you don't, anal yzer will process the fields according
to their specific attributes.

Working with Currencies and Exchange Rates

The cur r ency FieldType provides support for monetary values to Solr/Lucene with query-time currency conversion and exchange rates. The
following features are supported:

Apache Solr Reference Guide 4.6 32

Point queries

Range queries

Function range queries (new in Solr 4.2)

Sorting

Currency parsing by either currency code or symbol

Symmetric & asymmetric exchange rates (asymmetric exchange rates are useful if there are fees associated with exchanging the
currency)

Configuring Currencies

The cur r ency field type is defined in schena. xm . This is the default configuration of this type:

<fi el dType nane="currency" class="solr.CurrencyFi el d" precisionStep="8"
defaul t Currency="USD" currencyConfig="currency.xm" />

In this example, we have defined the name and class of the field type, and defined the def aul t Curr ency as "USD", for U.S. Dollars. We have
also defined a cur r encyConf i g to use a file called "currency.xml". This is a file of exchange rates between our default currency to other
currencies. There is an alternate implementation that would allow regular downloading of currency data. See Exchange Rates below for more.
At indexing time, money fields can be indexed in a native currency. For example, if a product on an e-commerce site is listed in Euros, indexing
the price field as "1000,EUR" will index it appropriately. The price should be separated from the currency by a comma, and the price must be
encoded with a floating point value (a decimal point).

During query processing, range and point queries are both supported.

Exchange Rates

You configure exchange rates by specifying a provider. Natively, two provider types are supported: Fi | eExchangeRat ePr ovi der or
OpenExchangeRat esOr gPr ovi der .

FileExchangeRateProvider

This provider requires you to provide a file of exchange rates. It is the default, meaning that to use this provider you only need to specify the file
path and name as a value for cur r encyConf i g in the definition for this type.

There is a sample currency. xm file included with Solr, found in the same directory as the schema. xm file. Here is a small snippet from this
file:

<currencyConfig version="1.0">
<rates>
<!-- Updated from http://ww. exchangerate.com at 2011-09-27 -->
<rate fronm="USD' to="ARS" rate="4.333871" comment="ARGENTI NA Peso" />
<rate from="USD' to="AUD" rate="1.025768" comment ="AUSTRALI A Dol lar" />
<rate fronm="USD' to="EUR"' rate="0.743676" coment="European Euro" />
<rate from="USD' to="CAD"' rate="1.030815" coment="CANADA Dol lar" />

<l-- Cross-rates for some commopn currencies -->
<rate fronF"EUR' to="GBP" rate="0.869914" />
<rate from="EUR' to="NOK" rate="7.800095" />
<rate from="GBP" to="NOK" rate="8.966508" />

<l-- Asymetrical rates -->
<rate from"EUR' to="USD"' rate="0.5" />
</rates>

</ currencyConfi g>

OpenExchangeRatesOrgProvider

With Solr 4, you can configure Solr to download exchange rates from OpenExchangeRates.Org, with updates rates between USD and 158
currencies hourly. These rates are symmetrical only.

In this case, you need to specify the pr ovi der G ass in the definitions for the field type. Here is an example:

Apache Solr Reference Guide 4.6 33

http://www.OpenExchangeRates.Org

<fi el dType nane="currency" class="solr. CurrencyFi el d" precisionStep="8"
provi der G ass="sol r. OpenExchangeRat esOr gPr ovi der"
refreshlnterval =" 60"
ratesFil eLocation="http://internal.server/rates.json"/>

Theref reshl nt erval is minutes, so the above example will download the newest rates every 60 minutes.

Working with Dates

Date Formatting

Solr's Tri eDat eFi el d (and deprecated Dat eFi el d) represents a point in time with millisecond precision. The format used is a restricted form
of the canonical representation of dat eTi ne in the XML Schema specification:

YYYY- M DDThh: nm ssZ

YYYY is the year.

MMis the month.

DD is the day of the month.

hh is the hour of the day as on a 24-hour clock.

nmis minutes.

Ss is seconds.

Zis a literal 'Z' character indicating that this string representation of the date is in UTC

Note that no time zone can be specified; the String representations of dates is always expressed in Coordinated Universal Time (UTC). Here is an
example value:

1972-05-20T17: 33: 187

You can optionally include fractional seconds if you wish, although trailing zeros are not allowed and any precision beyond milliseconds will be
ignored. Here are examples value with sub-seconds include:

® 1972-05-20T17: 33:18. 772Z

® 1972-05-20T17: 33:18.77Z
® 1972-05-20T17:33:18.7Z

Date Math

Solr's date field types also supports date math expressions, which makes it easy to create times relative to fixed moments in time, include the
current time which can be represented using the special value of "NOW.

Date Math Syntax

Date math expressions consist either adding some quantity of time in a specified unit, or rounding the current time by a specified unit. expressions
can be chained and are evaluated left to right.

For example: this represents a point in time two months from now:

NOW-2 MONTHS

This is one day ago:

NOW 1DAY

A slash is used to indicate rounding. This represents the beginning of the current hour:
NOW HOUR

The following example computes (with millisecond precision) the point in time six months and three days into the future and then rounds that time
to the beginning of that day:

NOW-6 MONTHS+3DAYS/ DAY
Note that while date math is most commonly used relative to NOWit can be applied to any fixed moment in time as well:

1972- 05- 20T17: 33: 18. 772Z+6 MONTHS+3DAYS/ DAY

Request Parameters That Affect Date Math

Apache Solr Reference Guide 4.6 34

http://www.w3.org/TR/xmlschema-2/#dateTime

NOow

The NOWparameter is used internally by Solr to ensure consistent date math expression parsing across multiple nodes in a distributed request.
But it can be specified to instruct Solr to use an arbitrary moment in time (past or future) to override for all situations where the the special value of
"NOW would impact date math expressions.

It must be specified as a (long valued) milliseconds since epoch

Example:

g=sol r& g=start_date:[* TO NOW &NOW-1384387200000
TZ

By default, all date math expressions are evaluated relative to the UTC TimeZone, but the TZ parameter can be specified to override this
behaviour, by forcing all date based addition and rounding to be relative to the specified time zone.

For example, the following request will use range faceting to facet over the current month, "per day" relative UTC:

http://1ocal host: 8983/ sol r/ sel ect ?2q=*: *&f acet.range=ny_date_fi el d&f acet =t rue&f acet. ran
ge. st art =NOW MONTH&f acet . r ange. end=NOW MONTHY2 BLMONTH&f acet . r ange. gap=%2B1DAY

<int nanme="2013-11-01T00: 00: 00Z">0</i nt>
<int name="2013-11-02T00: 00: 00Z">0</i nt >
<int nanme="2013-11-03T00: 00: 00Z">0</i nt >
<int nanme="2013-11-04T00: 00: 00Z">0</i nt >
<int nanme="2013-11-05T00: 00: 00Z">0</i nt>
<int name="2013-11-06T00: 00: 00Z">0</i nt >
<int nanme="2013-11-07T00: 00: 00Z">0</i nt >

While in this example, the "days" will be computed relative to the specified time zone - including any applicable Daylight Savings Time
adjustments:

http://1ocal host: 8983/ sol r/ sel ect ?2q=*: *&f acet.range=ny_date_fi el d&f acet =t rueé&f acet.ran
ge. st art =NOW MONTH&f acet . r ange. end=NOW MONTHY2 BLMONTH&f acet . r ange. gap=%2B1DAY&TZ=Aner i
cal/ Los_Angel es

<int nanme="2013-11-01T07: 00: 00Z">0</int>
<int name="2013-11-02T07: 00: 00Z">0</int>
<int nanme="2013-11-03T07: 00: 00Z">0</i nt >
<int nanme="2013-11-04T08: 00: 00Z">0</i nt >
<int nanme="2013-11-05T08: 00: 00Z">0</i nt>
<int name="2013-11-06T08: 00: 00Z">0</i nt>
<int nanme="2013-11-07T08: 00: 00Z">0</i nt >

Working with Enum Fields

The EnumField type allows defining a field whose values are a closed set, and the sort order is pre-determined but is not alphabetic nor numeric.
Examples of this are severity lists, or risk definitions.

Defining an EnumField in schema. xm

The EnumpField type definition is quite simple, as in this example defining a 'severityType' field:

Apache Solr Reference Guide 4.6 35

http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html

<fi el dType nane="severityType" class="solr. EnunFi el d' enunsConfig="enunsConfig.xm "
enumNane="severity"/>

Besides the nane and the cl ass, which are common to all field types, this type also takes two additional parameters:
® enunsConfi g: the name of a configuration file that contains the list of field values and their order. This file can include several different

lists of field values if there are multiple uses for this field type in your Solr implementation.
* enuniNane: the name of the list in the configuration file to use for this type.

Defining the EnumField configuration file

The file named with the enuns Conf i g parameter in the field type definition should contain name:value pairs, where nane is the field value and
val ue is a number indicating the sort order. Higher "value" numbers will sort before lower "value" numbers. If a path to the file is not defined in
the field type, the file should be in the conf directory for the collection.

In this example, there are two value lists defined. Each list is between enumopening and closing tags:

<?xm version="1.0" ?>

<enunsConfi g>
<enum nanme="severity">
<pai r name="Not Avail able" val ue="0"/>
<pair nane="Low' val ue="1"/>
<pai r nanme="Medi un' val ue="2"/>
<pair name="H gh" val ue="3"/>
<pair name="Critical" value="4"/>
</ enun®
<enum nane="ri sk" >
<pai r name="Unknown" val ue="0"/>
<pair nanme="Very Low' val ue="1"/>
<pair nane="Low' val ue="2"/>
<pai r nanme="Medi un' val ue="3"/>
<pair name="H gh" val ue="4"/>
<pair name="Critical" value="5"/>
</ enun®
</ enunsConfi g>

Working with External Files and Processes

The External Fi | eFi el d Type

The Ext er nal Fi | eFi el d type makes it possible to specify the values for a field in a file outside the Solr index. For such a field, the file contains
mappings from a key field to the field value. Another way to think of this is that, instead of specifying the field in documents as they are indexed,
Solr finds values for this field in the external file.

. External fields are not searchable. They can be used only for function queries or display. For more information on function
queries, see the section on Function Queries.

The Ext er nal Fi | eFi el d type is handy for cases where you want to update a particular field in many documents more often than you want to
update the rest of the documents. For example, suppose you have implemented a document rank based on the number of views. You might want
to update the rank of all the documents daily or hourly, while the rest of the contents of the documents might be updated much less frequently.
Without Ext er nal Fi | eFi el d, you would need to update each document just to change the rank. Using Ext er nal Fi | eFi el d is much more
efficient because all document values for a particular field are stored in an external file that can be updated as frequently as you wish.

In schema. xm , the definition of this field type might look like this:

<fi el dType nane="entryRankFile" keyFi el d="pkld" defVal ="0" stored="fal se"
i ndexed="fal se" class="solr.External Fil eFi el d" val Type="pfloat"/>

Apache Solr Reference Guide 4.6 36

The keyFi el d attribute defines the key that will be defined in the external file. It is usually the unique key for the index, but it doesn't need to be
as long as the keyFi el d can be used to identify documents in the index. A def Val defines a default value that will be used if there is no entry in
the external file for a particular document.

The val Type attribute specifies the actual type of values that will be found in the file. The type specified must be either a float field type, so valid
values for this attribute are pf | oat, f1 oat ortfl oat. This attribute can be omitted.

Format of the External File

The file itself is located in Solr's index directory, which by default is $SOLR_HOVE/ dat a. The name of the file should be ext er nal _fi el dname
or ext ernal _fi el dnane. *. For the example above, then, the file could be named ext er nal _ent r yRankFi | e or
external _entryRankFile.txt.

r

If any files using the name pattern . * (such as . t xt) appear, the last (after being sorted by name) will be used and previous
versions will be deleted. This behavior supports implementations on systems where one may not be able to overwrite a file (for
example, on Windows, if the file is in use).

The file contains entries that map a key field, on the left of the equals sign, to a value, on the right. Here are a few example entries:
doc33=1. 414

doc34=3. 14159

doc40=42

The keys listed in this file do not need to be unique. The file does not need to be sorted, but Solr will be able to perform the lookup faster if it is.

Reloading an External File

As of Solr 4.1, it's possible to define an event listener to reload an external file when either a searcher is reloaded or when a new searcher is
started. See the section Query Related Listeners for more information, but a sample definition in sol r conf i g. xml might look like this:

<l i stener event="newSearcher"

cl ass="org. apache. sol r. schena. Ext er nal Fi | eFi el dRel oader"/ >
<listener event="firstSearcher"

cl ass="org. apache. sol r. schena. Ext ernal Fi | eFi el dRel oader"/ >

Pre-Analyzing a Field Type

The Pr eAnal yzedFi el d type provides a way to send to Solr serialized token streams, optionally with independent stored values of a field, and
have this information stored and indexed without any additional text processing applied in Solr. This is useful if user wants to submit field content
that was already processed by some existing external text processing pipeline (e.g., it has been tokenized, annotated, stemmed, synonyms
inserted, etc.), while using all the rich attributes that Lucene's TokenStream provides (per-token attributes).

The serialization format is pluggable using implementations of PreAnalyzedParser interface. There are two out-of-the-box implementations:
® JsonPreAnalyzedParser: as the name suggests, it parses content that uses JSON to represent field's content. This is the default parser
to use if the field type is not configured otherwise.

® SimplePreAnalyzedParser: uses a simple strict plain text format, which in some situations may be easier to create than JSON.

There is only one configuration parameter, par ser | npl . The value of this parameter should be a fully qualified class name of a class that
implements PreAnalyzedParser interface. The default value of this parameter is or g. apache. sol r. schena. JsonPr eAnal yzedPar ser .

Field Properties by Use Case

Here is a summary of common use cases, and the attributes the fields or field types should have to support the case. An entry of true or false in
the table indicates that the option must be set to the given value for the use case to function correctly. If no entry is provided, the setting of that
attribute has no impact on the case.

Use Case indexed ' stored multiValued omitNorms termVectors termPositions
search within field true

retrieve contents true

use as unique key true false

Apache Solr Reference Guide 4.6 37

http://wiki.apache.org/solr/TokenStream
http://wiki.apache.org/solr/PreAnalyzedParser
http://wiki.apache.org/solr/JsonPreAnalyzedParser
http://wiki.apache.org/solr/SimplePreAnalyzedParser
http://wiki.apache.org/solr/PreAnalyzedParser

sort on field true false true 1

use field boosts ® false

document boosts affect searches within field false

highlighting true 4 true 2 true 3
faceting ° true

add multiple values, maintaining order true

field length affects doc score false

MoreLikeThis °

Notes:

true ©

1 Recommended but not necessary.
2 Will be used if present, but not necessary.

3 (if termVectors=true)

4 A tokenizer must be defined for the field, but it doesn't need to be indexed.
5 Described in Understanding Analyzers, Tokenizers, and Filters.

6 Term vectors are not mandatory here. If not true, then a stored field is analyzed. So term vectors are recommended, but only required if

st or ed=f al se.

Defining Fields

Once you have the field types set up, defining the fields themselves is simple. All you do is supply a name and a field type. If you wish, you can
also provide options that will override the options for the field type.

Fields are defined in the fields element of schena. xni . The following example defines a field named pri ce with a type of sf| oat .

<field name="pri

ce" type="sfloat" indexed="true" stored="true"/>

Fields can have the same options as field types. The field type options serve as defaults which can be overridden by options defined per field.
Included below is the table of field type properties from the section Field Type Definitions and Properties:

Property

indexed

stored
docValues
sortMissingFirst
sortMissingLast

multivValued

omitNorms

omitTermFreqAndPositions

omitPositions

Apache Solr Reference Guide 4.6

Description

If true, the value of the field can be used in queries to retrieve matching documents

If true, the actual value of the field can be retrieved by queries

If true, the value of the field will be put in a column-oriented DocValues structure

Control the placement of documents when a sort field is not present. As of Solr 3.5, these work for all
numeric fields, including Trie and date fields.

If true, indicates that a single document might contain multiple values for this field type

If true, omits the norms associated with this field (this disables length normalization and index-time
boosting for the field, and saves some memory). Defaults to true for all primitive (non-analyzed) field
types, such as int, float, data, bool, and string. Only full-text fields or fields that need an index-time boost
need norms.

If true, omits term frequency, positions, and payloads from postings for this field. This can be a
performance boost for fields that don't require that information. It also reduces the storage space
required for the index. Queries that rely on position that are issued on a field with this option will silently

fail to find documents. This property defaults to true for all fields that are not text fields.

Similar to omi t Ter nFr eqAndPosi t i ons but preserves term frequency information

Values

true or
false

true or
false

true or
false

true or
false

true or
false

true or
false

true or
false

true or
false

38

termVectors These options instruct Solr to maintain full term vectors for each document, optionally including the true or
termPositions position and offset information for each term occurrence in those vectors. These can be used to false
termOffsets accelerate highlighting and other ancillary functionality, but impose a substantial cost in terms of index

size. They are not necessary for typical uses of Solr

Related Topics

® SchemaXML-Fields
® Field Options by Use Case

Copying Fields

You might want to interpret some document fields in more than one way. Solr has a mechanism for making copies of fields so that you can apply
several distinct field types to a single piece of incoming information.

The name of the field you want to copy is the source, and the name of the copy is the destination. In schema. xni , it's very simple to make copies
of fields:

<copyFi el d source="cat" dest="text" maxChars="30000" />

If the text field has data of its own in input documents, the contents of cat will be added to the index for text. The maxChar s parameter, an i nt
parameter, establishes an upper limit for the number of characters to be copied. This limit is useful for situations in which you want to control the

size of index files.

Both the source and the destination of copyFi el d can contain asterisks, which will match anything. For example, the following line will copy the
contents of all incoming fields that match the wildcard pattern * _t to the text field.:

<copyField source="*_t" dest="text" nmaxChars="25000" />

1, The copyFi el d command can use a wildcard (*) character in the dest parameter only if the sour ce parameter contains one
as well. copyFi el d uses the matching glob from the source field for the dest field name into which the source content is

copied.

Related Topics

® SchemaXML-Copy Fields

Dynamic Fields

Dynamic fields allow Solr to index fields that you did not explicitly define in your schema. This is useful if you discover you have forgotten to define
one or more fields. Dynamic fields can make your application less brittle by providing some flexibility in the documents you can add to Solr.

A dynamic field is just like a regular field except it has a name with a wildcard in it. When you are indexing documents, a field that does not match
any explicitly defined fields can be matched with a dynamic field.

For example, suppose your schema includes a dynamic field with a name of * _i . If you attempt to index a document with a cost _i field, but no
explicit cost _i field is defined in the schema, then the cost _i field will have the field type and analysis defined for * _i .

Dynamic fields are also defined in the fields element of schema. xni . Like fields, they have a name, a field type, and options.

<dynami cField name="*_i" type="int" indexed="true" stored="true"/>

It is recommended that you include basic dynamic field mappings (like that shown above) in your schena. xm . The mappings can be very useful.

Related Topics

® SchemaXML-Dynamic Fields

Apache Solr Reference Guide 4.6 39

http://wiki.apache.org/solr/SchemaXml#Fields
http://wiki.apache.org/solr/FieldOptionsByUseCase
http://wiki.apache.org/solr/SchemaXml#Copy_Fields
http://wiki.apache.org/solr/SchemaXml#Dynamic_fields

Other Schema Elements

This section describes several other important elements of scherma. xm .

Unique Key

The uni queKey element specifies which field is a unique identifier for documents. Although uni queKey is not required, it is nearly always
warranted by your application design. For example, uni queKey should be used if you will ever update a document in the index.

You can define the unique key field by naming it:

<uni queKey>i d</ uni queKey>

Starting with Solr 4, schema defaults and copyFi el ds cannot be used to populate the uni queKey field. You also can't use
UUI DUpdat ePr ocessor Fact ory to have uni queKey values generated automatically.

Further, the operation will fail if the uni queKey field is used, but is multivalued (or inherits the multivalueness from the fi el dt ype). However,
uni queKey will continue to work, as long as the field is properly used.

Default Search Field

If you are using the Lucene query parser, queries that don't specify a field name will use the def aul t Sear chFi el d. The DisMax and Extended
DisMax query parsers do not use this value.

@ Use of the def aul t Sear chFi el d element is deprecated in Solr versions 3.6 and higher. Instead, you should use the df
request parameter. At some point, the def aul t Sear chFi el d element may be removed.

For more information about query parsers, see the section on Query Syntax and Parsing.

Query Parser Default Operator

In queries with multiple terms, Solr can either return results where all conditions are met or where one or more conditions are met. The operator
controls this behavior. An operator of AND means that all conditions must be fulfilled, while an operator of OR means that one or more conditions
must be true.

In schema. xm , the sol r Quer yPar ser element controls what operator is used if an operator is not specified in the query. The default operator
setting only applies to the Lucene query parser, not the DisMax or Extended DisMax query parsers, which internally hard-code their operators to
OR.

e

The query parser default operator parameter has been deprecated in Solr versions 3.6 and higher. You are instead encouraged
to specify the query parser g. op parameter in your request handler.

Similarity

Similarity is a Lucene class used to score a document in searching. This class can be changed in order to provide a more custom sorting. With
Solr 4, you can configure a different si mi | ari ty for each field, meaning that scoring a document will differ depending on what's in each field.
However, you can still configure a global si m | ari ty is configured in the schema.xml file, where an implicit instance of

Defaul tSimlarityFactory is used.

A global <si mi | ari t y> declaration can be used to specify a custom similarity implementation that you want Solr to use when dealing with your
index. A similarity can be specified either by referring directly to the name of a class with a no-argument constructor:

<simlarity class="solr.DefaultSimlarityFactory"/>

or by referencing a Si mi | ari t yFact ory implementation, which may take optional initialization parameters:

Apache Solr Reference Guide 4.6 40

<simlarity class="solr.DFRSinilarityFactory">
<str name="basi cModel ">P</str>
<str nanme="afterEffect">L</str>
<str name="nornalization">H2</str>
<fl oat name="c">7</fl oat >
</[simlarity>

Beginning with Solr 4, similarity factories can be specified on individual field types:

<fiel dType nane="text _ib">
<anal yzer/ >
<simlarity class="solr.IBSimlarityFactory">
<str nanme="distribution">SPL</str>
<str name="| anbda" >DF</str>
<str nanme="nornalization">H2</str>
</simlarity>
</fieldType>

This example uses | BSi mi | ari t yFact ory (using the Information-Based model), but there are several similarity implementations that can be
used. For Solr 4.2, Sweet Spot Si mi | ari t yFact ory has been added. Other options include BM25Si i | ari t yFact ory,
DFRSi mi | arityFactory, SchemaSi ni | ari t yFact ory and others. For details, see the Solr Javadocs for the similarity factories.

Related Topics

¢ SchemaXML-Miscellaneous Settings
® UniqueKey

Schema API

The Solr schema API allows using a REST API to get information about the schenma. xm for each collection (or core for standalone Solr),
including defined field types, fields, dynamic fields, and copy field declarations. In Solr 4.2 and 4.3, it only allows GET (read-only) access, but in
Solr 4.4, new fields and copyField directives may be added to the schema. Future Solr releases will extend this functionality to allow more schema
elements to be updated.

To enable schema modification with this API, the schema will need to be managed and mutable. See the section Managed Schema Definition in
SolrConfig for more information.

The API allows two output modes for all calls: JISON or XML. When requesting the complete schema, there is another output mode which is XML
modeled after the schema.xml file itself.

The base address for the APl is htt p: / / <host >: <port >/ <cont ext - pat h>, where <cont ext - pat h> is usually sol r, though you may have
configured it differently. Example base address: htt p: / /1 ocal host: 8983/ sol r.

In the API entry points and example URLs below, you may alternatively specify a Solr core name where it says collection.

® API Entry Points
® Retrieve schema information
® Retrieve the Entire Schema
List Fields
List a Specific Field
List Dynamic Fields
List a Specific Dynamic Field Rule
List Field Types
List a Specific Field Type
List Copy Fields
Show Schema Name
Show the Schema Version
List UniqueKey
Show Global Similarity
® Get the Default Query Operator
® Modify the schema
® Create new schema fields
® Create one new schema field
® Create new copyField directives

Apache Solr Reference Guide 4.6 41

http://lucene.apache.org/solr/4_2_0/solr-core/org/apache/solr/search/similarities/package-summary.html
http://wiki.apache.org/solr/SchemaXml#Miscellaneous_Settings
http://wiki.apache.org/solr/UniqueKey
http://localhost:8983/solr

® Related Topics

API Entry Points

/collecti
/collecti
/collecti
/collecti
/collecti
/collecti
/collecti
/collecti
/collecti
/collecti
/collecti
/collecti
/collecti

on/ schema: retrieve the entire schema

on/ schema/ fi el ds: retrieve information about all defined fields, or create new fields with optional copyField directives
on/ schema/ fi el ds/ nane: retrieve information about a named field, or create a new named field with optional copyField directives
on/ schema/ dynami cfi el ds: retrieve information about dynamic field rules

on/ schema/ dynami cfi el ds/ namne: retrieve information about a named dynamic rule

on/ schena/ fi el dt ypes: retrieve information about field types

on/ schema/ fi el dt ypes/ nane: retrieve information about a named field type

on/ schema/ copyfi el ds: retrieve information about copy fields, or create new copyField directives

on/ schema/ namne: retrieve the schema name

on/ schema/ ver si on: retrieve the schema version

on/ schema/ uni quekey: retrieve the defined uniqueKey

on/ schema/ si m | ari ty: retrieve the global similarity definition

on/ schema/ sol r quer ypar ser/ def aul t oper at or : retrieve the default operator

Retrieve schema information

Retrieve the Entire Schema

CGET /coll

Input

ection/ schena

Path Parameters

Key

collection

Description

The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key Type Required Default Description

wt string No json Defines the format of the response. The options are json, xml or schema.xml. If not specified, JSON will

Output

be returned by default.

Output Content

The output will include all fields, field types, dynamic rules and copy field rules. The schema name and version are also included.

Examples

Input

Get the entire schema in JSON.

curl http://local host:8983/solr/collectionl/schema?wt =j son

Get the entire schema in XML.

curl http://1ocal host:8983/solr/collectionl/schema?w =xmni

Get the entire schema in "schema.xml" format.

curl http://1ocal host:8983/solr/collectionl/schema?w =schena. xmi

Apache Solr Reference Guide 4.6 42

Output
The samples below have been truncated to only show a few snippets of the output.

Example output in JSON:

Apache Solr Reference Guide 4.6

43

{

"responseHeader": {
"status":0,
"Qri ne": 5},
"schema": {
"name": "exanpl e",
"version": 1.5,
"uni queKey":"id",
"fieldTypes": [{
"name":"al phaOnl ySort ™"
"class":"solr. Text Fi el d"
"sort M ssinglLast":true
"om t Nornms":true,
"anal yzer":{
"t okeni zer":{
"class": "sol r. Keywor dTokeni zer Factory"},
"filters":[{
"class":"solr. Lower CaseFilterFactory"},

{
"class":"solr.TrinFilterFactory"},

{
"class":"solr. PatternRepl aceFi | t er Fact ory”
"replace":"all",
"repl acement":"",
"pattern”:"(["a-2z])"}1}},

"fields":[{
"name":"_version_",

"type":"long",

"i ndexed":true
"stored":true},
"nane": " aut hor",
"type":"text_general ",
"indexed":true
"stored":true},

nane": " cat
"type":"string",
“mul ti Val ued":true,
"i ndexed": true
"stored":true},

"copyFields":[{
"source":"aut hor",
"dest":"text"},
"source":"cat"
"dest":"text"},

"source":"content",

"dest":"text"},

"source": "aut hor",
"dest":"author_s"}]}}

Apache Solr Reference Guide 4.6

Example output in XML:

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>

<l st name="responseHeader" >
<int name="status">0</int>
<int name="Qrli me">5</int>
</lst>
<l st name="schema" >
<str nanme="nane">exanpl e</str>
<fl oat name="version">1.5</fl oat >
<str name="uni queKey" >i d</str>
<arr name="fiel dTypes">
<l st>
<str nanme="nane">al phaOnl ySort</str>
<str name="cl ass">sol r. Text Fi el d</str>
<bool nane="sortM ssingLast">true</bool >
<bool name="omi t Nor ns" >t r ue</ bool >
<l st name="anal yzer">
<l st name="t okeni zer">
<str name="cl ass">sol r. Keywor dTokeni zer Fact ory</str>
</[lst>
<arr name="filters">
<l st>
<str name="cl ass">sol r. Lower CaseFi | t er Fact ory</str>
</[lst>
<l st>
<str name="class">solr. TrinFilterFactory</str>
</lst>
<l st>
<str nanme="cl ass">solr. PatternRepl aceFilterFactory</str>
<str name="replace">all </str>
<str name="repl acenment"/>
<str name="pattern">(["a-z])</str>
</lst>
<larr>
</lst>
</[lst>

<| st>
<str nane="source">aut hor</str>
<str nanme="dest">aut hor_s</str>
</lst>
</arr>
</|st>
</ response>

Example output in schema.xml format:

Apache Solr Reference Guide 4.6

45

<?xm version="1.0" encodi ng="UTF-8"?>
<schema nanme="exanpl e" version="1.5">
<uni queKey>i d</ uni queKey>
<types>
<fiel dType nane="al phaOnl ySort" cl ass="solr. TextFi el d" sortM ssi ngLast="true"
om t Nor ms="true">

<anal yzer>
<t okeni zer cl ass="sol r. Keywor dTokeni zer Factory"/ >

<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.TrinFilterFactory"/>
<filter class="solr.PatternRepl aceFilterFactory" replace="all" replacenent=""
pattern="(["a-z])"/>
</ anal yzer >
</fieldType>

<copyField source="url" dest="text"/>

<copyFi el d source="price" dest="price_c"/>

<copyFi el d source="aut hor" dest="aut hor_s"/>
</ schema>

List Fields

GET /col l ection/schena/fields
Input
Path Parameters

Key Description

collection | The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key | Type Required Default Description

Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by
default.

wt | string No json

Output

Output Content

The output will include each field and any defined configuration for each field. The defined configuration can vary for each field, but will minimally
include the field nane, the t ype, ifitis i ndexed and if it is st or ed. If nul ti Val ued is defined as either true or false (most likely true), that will

also be shown. See the section Defining Fields for more information about each parameter.

Examples

Input
Get a list of all fields.

curl http://1ocal host:8983/solr/collectionl/schena/fields?w=json

Output
The sample output below has been truncated to only show a few fields.

Apache Solr Reference Guide 4.6 46

"fields": [

{
"i ndexed": true,
"name": "_version_",
"stored": true,
"type": "long"

}

{
"i ndexed": true,
"name": "author",
"stored": true,
"type": "text_general"

3

{
"i ndexed": true,
"mul ti Val ued": true,
"name": "cat",
"stored": true,
"type": "string"

}

1,
"responseHeader": {
"Qlinme": 1,
"status": O

List a Specific Field

GET /col l ection/schema/fields/fieldnanme

Input

Path Parameters

Key Description
collection = The collection (or core) name.

fieldname The specific field name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description

wt string ' No json Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by
default.

Output

Output Content

The output will include each field and any defined configuration for the field. The defined configuration can vary for a field, but will minimally
include the field nane, the t ype, ifitis i ndexed and if it is st or ed. If nul ti Val ued is defined as either true or false (most likely true), that will

also be shown. See the section Defining Fields for more information about each parameter.

Apache Solr Reference Guide 4.6 47

Examples

Input
Get the "author field.
curl http://1ocal host:8983/solr/collectionl/schena/fields/author?w=json
Output
{
"field": {
"i ndexed": true,
"nane": "author",
"stored": true,
"type": "text_general"
}s
"responseHeader": {
n QTI n.eu : 2,
"status": O
}
}

List Dynamic Fields

GET /col |l ection/schema/ dynam cfi el ds

Input

Path Parameters

Key Description

collection = The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description
Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by

wit string No json
default.

Output

Output Content

The output will include each dynamic field rule and the defined configuration for each rule. The defined configuration can vary for each rule, but
will minimally include the dynamic field nane, the t ype, if it is i ndexed and if it is st or ed. See the section Dynamic Fields for more information

about each parameter.

Examples

Input
Get a list of all dynamic field declarations

curl http://1ocal host:8983/solr/collectionl/schenma/dynam cfiel ds?w =j son

Output
The sample output below has been truncated.

Apache Solr Reference Guide 4.6 48

{
"dynam cFi el ds": [
{
"i ndexed": true,
"name": "*_coordinate",
"stored": false,
"type": "tdoubl e"
b
{
"mul ti Val ued": true,
"name": "ignored_*",
"type": "ignored"
3
{
"name": "random *",
"type": "randont
H
{
"i ndexed": true,
“mul ti Val ued": true,
"nanme": "attr_*",
"stored": true,
"type": "text_general"
b
{
"i ndexed": true,
"mul ti Val ued": true,
"nanme": "*_txt",
"stored": true,
"type": "text_general"
}
1,
"responseHeader": {
"Qrinme": 1,
"status": O
}
}

List a Specific Dynamic Field Rule

GET /col |l ection/ schema/ dynam cfi el ds/ nane
Input
Path Parameters

Key Description
collection | The collection (or core) name.

name The name of the dynamic field rule.

Query Parameters

The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description

Apache Solr Reference Guide 4.6

wt | string No json Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by
default.

Output

Output Content

The output will include the requested dynamic field rule and any defined configuration for the rule. The defined configuration can vary for each
rule, but will minimally include the dynamic field nane, the t ype, ifitis i ndexed and if it is st or ed. See the section Dynamic Fields for more

information about each parameter.

Examples
Input
Get the details of the "™*_s" rule.
curl http://local host:8983/solr/collectionl/schena/dynanicfiel ds/*_s?w =j son
Output
{
"dynam cfield": {
"indexed": true,
"nane": "*_s",
"stored": true,
"type": "string"
}s
"responseHeader": {
"Qline": 1,
"status": O
}
}

List Field Types

GET /col | ection/schena/fiel dtypes

Input
Path Parameters

Key Description

collection = The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key | Type Required Default Description
wt string ' No json Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by
default.

Output

Output Content

The output will include each field type and any defined configuration for the type. The defined configuration can vary for each type, but will
minimally include the field type name and the cl ass. If query or index analyzers, tokenizers, or filters are defined, those will also be shown with
other defined parameters. See the section Solr Field Types for more information about how to configure various types of fields.

Apache Solr Reference Guide 4.6

Examples

Input
Get a list of all field types.

curl http://1ocal host:8983/solr/collectionl/schena/fieldtypes?wt =json

Output
Thepsample output below has been truncated to show a few different field types from different parts of the list.
{
"fieldTypes": [
{
"anal yzer": {
"class": "solr. Tokeni zer Chai n",
"filters": [
{
"class": "solr.LowerCaseFilterFactory"
}
{
"class": "solr.TrinFilterFactory"
}
{
"class": "solr.PatternRepl aceFilterFactory",
"pattern": "(["a-z])",
"replace": "all",
"repl acenent”: ""
}
I,
"t okeni zer": {
"class": "solr.KeywordTokeni zer Fact ory"
}
8
"class": "solr. TextField",
"dynam cFields": [],
"fields": [],
"name": "al phaOnlySort",
"om tNorms": true,
"sortM ssingLast": true
b
{
"class": "solr.TrieFloatField",
"dynam cFi el ds": [
"x fs",
wx o
1.
"fields": [
“price",
"wei ght "
1.
"nanme": "float",
"posi tionlncrement Gap": "0",
"precisionStep": "0"
I8
}

Apache Solr Reference Guide 4.6

51

List a Specific Field Type

GET /col | ection/schena/fi el dt ypes/ nane

Input

Path Parameters

Key Description
collection = The collection (or core) name.

name The name of the field type.

Query Parameters

The query parameters can be added to the API request after a '?".

Key | Type Required Default Description

Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by

wit string No json
default.

Output

Output Content

The output will include each field type and any defined configuration for the type. The defined configuration can vary for each type, but will
minimally include the field type name and the cl ass. If query and/or index analyzers, tokenizers, or filters are defined, those will be shown with
other defined parameters. See the section Solr Field Types for more information about how to configure various types of fields.

Examples

Input
Get details of the "date" field type.

curl

http://1 ocal host:8983/solr/collectionl/schema/fiel dtypes/date?w =j son

Output
The sample output below has been truncated.

"fieldType": {
"class": "solr.TrieDateField",
"dynam cFiel ds": [
"* dts",
e g
1.
"fields": [
"l ast _nodified"
1.
"name": "date",
"posi tionlncrement Gap": "0",
"precisionStep": "0"
H
"responseHeader": {
"Qlinme": 2,
"status": O

Apache Solr Reference Guide 4.6 52

List Copy Fields

GET /col |l ection/schema/ copyfi el ds

Input
Path Parameters

Key Description

collection = The collection (or core) name.

Query Parameters
The query parameters can be added to the API request after a '?".
Key ' Type Required Default Description
wit string No json
default.
Output

Output Content
The output will include the sour ce and dest ination of each copy field rule defined in schena. xm . For more information about copying fields,

see the section Copying Fields.

Examples

Input
Get a list of all copyfields.

curl http://1ocal host:8983/solr/collectionl/schenal/copyfields?w =json

Output
The sample output below has been truncated to the first few copy definitions.

Apache Solr Reference Guide 4.6

Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by

53

"copyFields": [

{
"dest": "text",
"source": "author"
H
{
"dest": "text",
"source": "cat"
H
{
"dest": "text",
"source": "content"
H
{
"dest": "text",
"source": "content_type"
H

1

"responseHeader": {
"Qrime": 3,
"status": O

Show Schema Name

GET /col | ection/ schema/ nane

Input
Path Parameters

Key Description

collection | The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key | Type Required Default Description

wt string No json Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by
default.

Output

Output Content
The output will be simply the name given to the schema.

Examples

Input
Get the schema name.

curl http://1ocal host:8983/solr/collectionl/schema/ name?wt =j son

Apache Solr Reference Guide 4.6 54

Output

"responseHeader": {
"status":O0,
"Qrinme": 1},

"name": "exanpl e"}

Show the Schema Version

CGET /col | ection/schena/ versi on

Input
Path Parameters

Key Description

collection ' The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description

wit string No json
default.

Output

Output Content

The output will simply be the schema version in use.
Examples

Input
Get the schema version

http://1ocal host: 8983/ sol r/col |l ectionl/schenma/version?w =j son

Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by

curl
Output
{
"responseHeader": {
"status":0,
"Qrinme": 2},

"version": 1.5}

List UniqueKey

GET /col |l ection/ schema/ uni quekey

Input

Path Parameters

Key Description

Apache Solr Reference Guide 4.6

55

collection | The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key | Type Required Default Description

wt string No json Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by
default.

Output

Output Content

The output will include simply the field name that is defined as the uniqueKey for the index.
Examples

Input
List the uniqueKey.

curl http://1ocal host:8983/solr/coll ectionl/schenma/uni quekey?w =j son

Output
The sample output below has been truncated to the first few copy definitions.

"responseHeader": {
"status":0,
"QTi ne": 2},

"uni queKey":"id"}

Show Global Similarity

GET /collection/schema/simlarity

Input
Path Parameters

Key Description

collection = The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key Type Required Default Description

wt string No json Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by
default.

Output

Output Content

The output will include the class name of the global similarity defined (if any).

Examples

Apache Solr Reference Guide 4.6 56

Input
Get the similarity implementation.

http://1 ocal host: 8983/ solr/col |l ectionl/schema/simlarity?wt=json

curl
Output
{
"responseHeader": {
"status":0,
"QrTi ne": 1},

"simlarity":{
"class":"org. apache.solr.search.simlarities.DefaultSimlarityFactory"}}

Get the Default Query Operator

GET /col | ecti on/ schena/ sol r quer ypar ser/ def aul t oper at or

Input
Path Parameters

Key Description

collection ' The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description

wt | string No json
default.

Output

Output Content

The output will include simply the default operator if none is defined by the user.
Examples

Input
Get the default operator.

Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by

curl
http://1ocal host:8983/sol r/coll ectionl/schena/sol rqueryparser/defaul toperator?w =j son

Output
{
"responseHeader": {
"status":0,
"Qrine": 2},

"defaul t Operator":"OR"}

Modify the schema

Apache Solr Reference Guide 4.6

57

Create new schema fields

POST /col | ection/schena/fiel ds

To enable schema modification, the schema will need to be managed and mutable. See the section Managed Schema Definition in SolrConfig for
more information.

Input

Path Parameters

Key Description

collection | The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description

wit string No json Defines the format of the response. The options are json or xml. If not specified, json will be returned by
default.

Request body

Only JSON format is supported in the request body. The JSON must contain an array of one or more new field specifications, each of which must
include mappings for the new field's nane and t ype. All attributes specifiable on a schema <fi el d name="..." ... /> declaration may be
specified here - see Defining Fields.

Additionally, copyFi el d destination(s) may optionally be specified. Note that each specified copyField destination must be an existing schema
field (and not a dynamic field). In particular, since the new fields specified in a new field creation request are defined all at once, you cannot
specify a copyFi el d that targets another new field in the same request - instead, you have to make two requests, defining the copyFi el d
destination in the first new field creation request, then specifying that field as a copyFi el d destination in the second new field creation request.

The cur| utility can provide the request body via its - - dat a- bi nary option.

Output

Output Content
The output will be the response header, containing a status code, and if there was a problem, an associated error message.

Example output in the default JSON format:

{

"responseHeader": {
"status":0,
"Qrinme":8}}

Examples

Input

Add two new fields:

Apache Solr Reference Guide 4.6 58

curl http://local host:8983/solr/collectionl/schema/fields -X POST -H
"Content-type: application/json' --data-binary '

[

{
"name": "sel |l - by",
"type":"tdate",
"stored":true

b

{
"nane":"catchal | ",
"type":"text_general ",
"stored":fal se

}

K

Add a third new field and copy it to the "catchall” field created above:

curl http://local host:8983/solr/collectionl/schema/fields -X POST -H
"Content-type:application/json' --data-binary '

[

"name": "depart ment",
"type":"string",

"docVal ues":"true",
"default":"no departnent",
"copyFields": ["catchall"]

Create one new schema field

PUT /col |l ection/schena/fiel ds/ nane

To enable schema modification, the schema will need to be managed and mutable. See the section Managed Schema Definition in SolrConfig for
more information.

Input

Path Parameters

Key Description
collection = The collection (or core) name.

name The new field name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description
wit string No json Defines the format of the response. The options are json or xml. If not specified, json will be returned by
default.
Request body

Only JSON format is supported in the request body. The body must include a set of mappings, minimally for the new field's nanme and t ype. All
attributes specifiable on a schema <fi el d nane="..." ... /> declaration may be specified here - see Defining Fields.

Apache Solr Reference Guide 4.6 59

Additionally, copyFi el d destination(s) may optionally be specified. Note that each specified copyField destination must be an existing schema
field (and not a dynamic field).

The cur| utility can provide the request body via its - - dat a- bi nary option.

Output

Output Content
The output will be the response header, containing a status code, and if there was a problem, an associated error message.

Example output in the default JSON format:

{
"responseHeader": {
"status":0,
"Qrine": 4}}
Examples

Input

Add a new field named "narrative":

curl http://1ocal host:8983/solr/collectionl/schena/fields/narrative -X PUT -H
"Content-type: application/json' --data-binary '

{
"type":"text_general ",
"stored":true,
"ternVectors":true,
"ternPositions":true,
"termOffsets":true

}

Add a new field named "color" and copy it to two fields, named "narrative" and "catchall”, which must already exist in the schema:

curl http://1ocal host: 8983/ solr/collectionl/schema/fields/color -X PUT -H
'Content-type:application/json' --data-binary '

{
"type":"string",
"stored":true,
"copyFields": [
"narrative",
"catchal I "
]
}

Create new copyField directives
POST /col I ecti on/ schena/ copyfi el ds

To enable schema modification, the schema will need to be managed and mutable. See the section Managed Schema Definition in SolrConfig for
more information.

Input

Path Parameters

Key Description

Apache Solr Reference Guide 4.6 60

collection = The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key | Type Required Default Description

wt string No json Defines the format of the response. The options are json or xml. If not specified, json will be returned by
default.

Request body

Only JSON format is supported in the request body. The body must contain an array of zero or more copyField directives, each containing a
mapping from sour ce to the source field name, and from dest to an array of destination field name(s).

sour ce field names must either be an existing field, or be a field name glob (with an asterisk either at the beginning or the end, or consist entirely
of a single asterisk). dest field names must either be existing fields, or, if sour ce is a glob, dest fields may be globs that match an existing
dynamic field.

The cur | utility can provide the request body via its - - dat a- bi nary option.

Output

Output Content
The output will be the response header, containing a status code, and if there was a problem, an associated error message.

Example output in the default JSON format:

{

"responseHeader": {
"status":0,
"Qrine": 2}}

Examples

Input

Copy the "affiliations" field to the "relations" field, and the "shelf" field to the "location" and "catchall" fields:

curl http://1ocal host:8983/solr/collectionl/schena/copyfields -X POST -H
"Content-type:application/json' --data-binary
[
{
"source":"affiliations",
"dest": |
“rel ations”
]
b
{
"source":"shel f"
"dest": [
"l ocation",
"catchal "
]
}
1

Copy all fields names matching “finance_*" to the "*_s" dynamic field:

Apache Solr Reference Guide 4.6 61

curl http://1ocal host:8983/solr/collectionl/schena/copyfields -X POST -H
"Content-type: application/json' --data-binary '

[

"source":"finance_*",
"dest": [
nx gn

K

Related Topics

® Managed Schema Definition in SolrConfig

Putting the Pieces Together

At the highest level, schena. xm is structured as follows. This example is not real XML, but it gives you an idea of the structure of the file.

<schema>
<types>
<fiel ds>
<uni queKey>
<def aul t Sear chFi el d>
<sol r QueryPar ser def aul t Oper at or >
<copyFi el d>
</ schema>

Obviously, most of the excitement is in types and fields, where the field types and the actual field definitions live. These are supplemented by
copyFi el ds. Sandwiched between fields and the copyFi el d section are the unique key, default search field, and the default query operator.

Choosing Appropriate Numeric Types

For general numeric needs, use the sortable field types, Sort abl el nt Fi el d, Sort abl eLongFi el d, Sort abl eFl oat Fi el d, and
Sor t abl eDoubl eFi el d. These field types will sort numerically instead of lexicographically, which is the main reason they are preferable over
their simpler cousins, | nt Fi el d, LongFi el d, Fl oat Fi el d, and Doubl eFi el d.

If you expect users to make frequent range queries on numeric types, consider using Tri eFi el d. It offers faster speed for range queries at the
expense of increasing index size.

Working With Text

Handling text properly will make your users happy by providing them with the best possible results for text searches.

One technique is using a text field as a catch-all for keyword searching. Most users are not sophisticated about their searches and the most
common search is likely to be a simple keyword search. You can use copyFi el d to take a variety of fields and funnel them all into a single text
field for keyword searches. In the example schema representing a store, copyFi el d is used to dump the contents of cat , nane, manu,

f eat ures, and i ncl udes into a single field, t ext . In addition, it could be a good idea to copy | Dinto t ext in case users wanted to search for a
particular product by passing its product number to a keyword search.

Another technique is using copyFi el d to use the same field in different ways. Suppose you have a field that is a list of authors, like this:

Schil dt, Herbert; Wl pert, Lew s; Davies, P.

For searching by author, you could tokenize the field, convert to lower case, and strip out punctuation:

schildt / herbert / wolpert / lewis / davies / p

For sorting, just use an untokenized field, converted to lower case, with punctuation stripped:

schil dt herbert wolpert lewis davies p

Apache Solr Reference Guide 4.6 62

Finally, for faceting, use the primary author only via a St ri ngFi el d:

Schil dt, Herbert

Related Topics

® SchemaXML

DocValues

An exciting addition to Solr functionality was introduced in Solr 4.2. This functionality has been around in Lucene for a while, but is now available
to Solr users.

DocValues are a way of building the index that is more efficient for some purposes.

Why DocValues?

The standard way that Solr builds the index is with an inverted index. This style builds a list of terms found in all the documents in the index and
next to each term is a list of documents that the term appears in (as well as how many times the term appears in that document). This makes
search very fast - since users search by terms, having a ready list of term-to-document values makes the query process faster.

For other features that we now commonly associate with search, such as sorting, faceting, and highlighting, this approach is not very efficient. The
faceting engine, for example, must look up each term that appears in each document that will make up the result set and pull the document IDs in
order to build the facet list. In Solr, this is maintained in memory, and can be slow to load (depending on the number of documents, terms, etc.).

In Lucene 4.0, a new approach was introduced. DocValue fields are now column-oriented fields with a document-to-value mapping built at index

time. This approach promises to relieve some of the memory requirements of the fieldCache and make lookups for faceting, sorting, and grouping
much faster.

How to Use DocValues

To use docValues, you only need to enable it for a field that you will use it with. As with all schema design, you need to define a field type and
then define fields of that type with docValues enabled. All of these actions are done in schema. xni .

Enabling a field for docValues only requires adding docVal ues="t r ue" to the field definition, as in this example (from Solr's default
schema. xm):

<field nane="nmanu_exact" type="string" indexed="false" stored="fal se" docVal ues="true"
/>

Prior to Solr 4.5, a field could not be empty to be used with docValues; in Solr 4.5, that restriction is removed.

v, Ifyou have already indexed data into your Solr index, you will need to completely re-index your content after changing your field
definitions in schema. xm in order to successfully use docValues.

DocValues are only available for specific field types. The types chosen determine the underlying Lucene docValue type that will be used. The
available Solr field types are:

® String fields of type St r Fi el d. If this type is used, the field must be either required or have a default value, meaning every document
must have a value for this field.
® |f the field is single-valued (i.e., multi-valued is false), Lucene will use the SORTED type.
® |f the field is multi-valued, Lucene will use the SORTED_SET type.
® Any Trie* fields. If this type is used, the field must be either required or have a default value, meaning every document must have a value
for this field.
® |f the field is single-valued (i.e., multi-valued is false), Lucene will use the NUMERIC type.
® |[f the field is multi-valued, Lucene will use the SORTED_SET type.
® UUID fields

These Lucene types are related to how the values are sorted and stored. For more information, please refer to the Solr Wiki at http://wiki.apache.
org/solr/DocValues.

There is an additional configuration option available, which is to modify the docVal uesFor nat used by the field type. The default implementation
employs a mixture of loading some things into memory and keeping some on disk. In some cases, however, you may choose to either keep
everything on disk or keep it in memory. You can do this by defining docVal uesFor mat =" Di sk" or docVal uesFor mat =" Menor y" on the field
type. This example shows defining the format as "Disk":

Apache Solr Reference Guide 4.6 63

http://wiki.apache.org/solr/SchemaXml
http://wiki.apache.org/solr/DocValues
http://wiki.apache.org/solr/DocValues

<fi el dType nane="string_ondi sk" class="solr.StrField" docVal uesFormat="Di sk" />

The option to keep everything on disk may be less performant, but it tries to maintain reasonable performance, and it's still better than fieldCache.
Keeping everything in memory may increase your memory requirements.

Please note that the docVal uesFor nat option may change in future releases.

Lucene index back-compatibility is only supported for the default codec. If you choose to customize the docVal uesFor mat in
your schema.xml, upgrading to a future version of Solr may require you to either switch back to the default codec and optimize
your index to rewrite it into the default codec before upgrading, or re-build your entire index from scratch after upgrading.

Related Topics

DocValues are quite new to Solr. For more background see:

® Introducing Lucene Index Doc Values, by Simon Willnauer, at SearchWorkings.org
® Fun with DocValues in Solr 4.2, by David Arthur, at SearchHub.org

Schemaless Mode

Schemaless Mode is a set of Solr features that, when used together, allow users to rapidly construct an effective schema by simply indexing
sample data, without having to manually edit the schema. These Solr features, all specified in sol rconfi g. xni , are:

1. Managed schema: Schema modifications are made through Solr APIs rather than manual edits - see Managed Schema Definition in
SolrConfig.

2. Field value class guessing: Previously unseen fields are run through a cascading set of value-based parsers, which guess the Java class
of field values - parsers for Boolean, Integer, Long, Float, Double, and Date are currently available.

3. Automatic schema field addition, based on field value class(es): Previously unseen fields are added to the schema, based on field value
Java classes, which are mapped to schema field types - see Solr Field Types.

These three features are pre-configured in the exanpl e/ exanpl e- schenal ess/ sol r/ directory in the Solr distribution. To start Solr in this
pre-configured schemaless mode, go to the exanpl e/ directory and start up Solr, setting the sol r. sol r. hone system property to this directory
on the command line:

java -Dsol r. sol r. home=exanpl e- schermal ess/solr -jar start.jar

The schema in exanpl e- schermal ess/ sol r/ col | ecti onl/ conf/ is shipped with only two fields, i d and _ver si on_, as can be seen from
calling the / schema/ fi el ds Schema APl -curl http://1 ocal host: 8983/ sol r/ schenma/ fi el ds outputs:

"responseHeader": {
"status":O0,
"Qrinme": 1},
"fields":[{
"name":"_version_",
"type":"long",
"i ndexed":true,
"stored":true},

"name":"id",
"type":"string",
"mul ti Val ued": f al se,
"i ndexed":true,
"required":true,
"stored":true,

"uni queKey":true}]}

Adding a CSV document will cause its fields that are not in the schema to be added, with fieldTypes based on values:

Apache Solr Reference Guide 4.6 64

http://www.searchworkings.org/blog/-/blogs/introducing-lucene-index-doc-values
http://searchhub.org/2013/04/02/fun-with-docvalues-in-solr-4-2/
http://localhost:8983/solr/schema/fields

curl "http://Iocal host: 8983/ sol r/update?conmi t=true" -H "Content-type: application/csv"
-d '

id,Artist, Al bum Rel eased, Rati ng, FronDi stri butor, Sold

44C, A d Shews, Mead for Wal ki ng, 1988-08-13, 0. 01, 14, 0'

Output indicating success:

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<l st name="r esponseHeader"><i nt nane="status">0</int><int nane="Qrli ne">106</int></| st>
</ response>
The fields now in the schema (output from cur| http://1 ocal host: 8983/ sol r/ schema/fi el ds):
{
"responseHeader": {
"status": 0,
"Qrinme": 1},
"fields":[{
"nare": " Al bunt',
"type":"text_general"}, // Field value guessed as String -> text_genera
fieldType
{
"name":"Artist"
"type":"text_general"}, // Field value guessed as String -> text_genera
fieldType
{
"nanme": " FronDi stri butor"
"type":"tlongs"}, /1 Field value guessed as Long -> tlongs fiel dType
{
"name": " Rating",
"type":"tdoubl es"}, /1 Field value guessed as Doubl e -> tdoubles fieldType
{
"name": " Rel eased",
"type":"tdates"}, /1 Field value guessed as Date -> tdates fiel dType
{
"name": " Sol d",
"type":"tlongs"}, /1 Field value guessed as Long -> tlongs fiel dType
{
"name":"_version_",
b
{
"nanme":"id",
1}

Once a field has been added to the schema, its field type is fixed. As a consequence, adding documents with field value(s) that conflict with the
previously guessed field type will fail. For example, after adding the above document, the Sol d field has fieldType t | ongs, but the document
below has a non-integral decimal value in this field:

curl "http://local host: 8983/ sol r/updat e?conmi t =true" -H "Content-type: application/csv"
-d"

i d, Description, Sold

19F, Cassettes by the pound, 4. 93"

Apache Solr Reference Guide 4.6 65

http://localhost:8983/solr/schema/fields

Output indicating failure:

<?xm version="1.0" encodi ng="UTF-8"?>
<response>
<l st name="responseHeader" >
<i nt name="stat us">400</i nt >
<int name="Qrli me">7</int>
</lst>
<l st name="error">
<str name="nmsg">ERROR [doc=19F] Error adding field 'Sold = 4.93
string: "4.93"</str>
<int name="code">400</i nt>
</lst>
</ response>

nmsg=For

i nput

Apache Solr Reference Guide 4.6

66

Understanding Analyzers, Tokenizers, and Filters

This sections describes how Solr breaks down and works with textual data. It covers the following topics:

Overview of Analyzers, Tokenizers, and Filters: A conceptual introduction to Solr's analyzers, tokenizers, and filters.

What Is An Analyzer?: Detailed conceptual information about Solr analyzers.

What Is A Tokenizer?: Detailed conceptual information about Solr tokenizers.

What Is a Filter?: Detailed conceptual information about Solr filters.

Tokenizers: Information about configuring tokenizers, and about the tokenizer factory classes included in this distribution of Solr.
Filter Descriptions: Information about configuring filters, and about the filter factory classes included in this distribution of Solr.
CharFilterFactories: Information about filters for pre-processing input characters.

Language Analysis: Information about tokenizers and filters for character set conversion or for use with specific languages.

Running Your Analyzer: Detailed information about testing and running your Solr analyzer.

Overview of Analyzers, Tokenizers, and Filters

Field analyzers are used both during ingestion, when a document is indexed, and at query time. An analyzer examines the text of fields and
generates a token stream. Analyzers may be a single class or they may be composed of a series of tokenizer and filter classes.

Tokenizers break field data into lexical units, or tokens. Filters examine a stream of tokens and keep them, transform or discard them, or create
new ones. Tokenizers and filters may be combined to form pipelines, or chains, where the output of one is input to the next. Such a sequence of
tokenizers and filters is called an analyzer and the resulting output of an analyzer is used to match query results or build indices.

Although the analysis process is used for both indexing and querying, the same analysis process need not be used for both operations. For
indexing, you often want to simplify, or normalize, words. For example, setting all letters to lowercase, eliminating punctuation and accents,
mapping words to their stems, and so on. Doing so can increase recall because, for example, "ram", "Ram" and "RAM" would all match a query
for "ram". To increase query-time precision, a filter could be employed to narrow the matches by, for example, ignoring all-cap acronyms if you're
interested in male sheep, but not Random Access Memory.

The tokens output by the analysis process define the values, or terms, of that field and are used either to build an index of those terms when a
new document is added, or to identify which documents contain the terms your are querying for.

This section will show you how to configure field analyzers and also serves as a reference for the details of configuring each of the available
tokenizer and filter classes. It also serves as a guide so that you can configure your own analysis classes if you have special needs that cannot be
met with the included filters or tokenizers.

For more information on Solr's analyzers, tokenizers, and filters, see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

What Is An Analyzer?

An analyzer examines the text of fields and generates a token stream. Analyzers are specified as a child of the <f i el dType> element in the
schema. xm configuration file that can be found in the sol r/ conf directory, or wherever sol r confi g. xm is located.

In normal usage, only fields of type sol r. Text Fi el d will specify an analyzer. The simplest way to configure an analyzer is with a single
<anal yzer > element whose class attribute is a fully qualified Java class name. The named class must derive from
org. apache. |l ucene. anal ysi s. Anal yzer . For example:

<fiel dType nane="nanetext" class="solr. TextFiel d">
<anal yzer cl ass="org. apache. | ucene. anal ysi s. Wi t espaceAnal yzer"/>
</fieldType>

In this case a single class, Wi t espaceAnal yzer, is responsible for analyzing the content of the named text field and emitting the
corresponding tokens. For simple cases, such as plain English prose, a single analyzer class like this may be sufficient. But it's often necessary to
do more complex analysis of the field content.

Even the most complex analysis requirements can usually be decomposed into a series of discrete, relatively simple processing steps. As you will

soon discover, the Solr distribution comes with a large selection of tokenizers and filters that covers most scenarios you are likely to encounter.
Setting up an analyzer chain is very straightforward; you specify a simple <anal yzer > element (no class attribute) with child elements that name

Apache Solr Reference Guide 4.6 67

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

factory classes for the tokenizer and filters to use, in the order you want them to run.

For example:

<fiel dType nane="nanetext" class="solr. TextFi el d">
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr. StandardFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory"/>
<filter class="solr.EnglishPorterFilterFactory"/>
</ anal yzer >
</fieldType>

Note that classes in the or g. apache. sol r. anal ysi s package may be referred to here with the shorthand sol r. prefix.

In this case, no Analyzer class was specified on the <anal yzer > element. Rather, a sequence of more specialized classes are wired together
and collectively act as the Analyzer for the field. The text of the field is passed to the first item in the list (sol r. St andar dTokeni zer Fact ory),
and the tokens that emerge from the last one (sol r. Engl i shPorterFi |l t er Fact ory) are the terms that are used for indexing or querying any
fields that use the "nametext" f i el dType.

Analysis Phases

Analysis takes place in two contexts. At index time, when a field is being created, the token stream that results from analysis is added to an index
and defines the set of terms (including positions, sizes, and so on) for the field. At query time, the values being searched for are analyzed and the
terms that result are matched against those that are stored in the field's index.

In many cases, the same analysis should be applied to both phases. This is desirable when you want to query for exact string matches, possibly
with case-insensitivity, for example. In other cases, you may want to apply slightly different analysis steps during indexing than those used at
query time.

If you provide a simple <anal yzer > definition for a field type, as in the examples above, then it will be used for both indexing and queries. If you
want distinct analyzers for each phase, you may include two <anal yzer > definitions distinguished with a type attribute. For example:

<fi el dType nane="nanetext" class="solr. TextFi el d">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.KeepWrdFilterFactory" words="keepwords.txt"/>
<filter class="solr.SynonynFilterFactory" synonyns="syns.txt"/>
</ anal yzer >
<anal yzer type="query">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

In this theoretical example, at index time the text is tokenized, the tokens are set to lowercase, any that are not listed in keepwor ds. t xt are
discarded and those that remain are mapped to alternate values as defined by the synonym rules in the file syns. t xt . This essentially builds an
index from a restricted set of possible values and then normalizes them to values that may not even occur in the original text.

At query time, the only normalization that happens is to convert the query terms to lowercase. The filtering and mapping steps that occur at index

time are not applied to the query terms. Queries must then, in this example, be very precise, using only the normalized terms that were stored at
index time.

What Is A Tokenizer?

The job of a tokenizer is to break up a stream of text into tokens, where each token is (usually) a sub-sequence of the characters in the text. An
analyzer is aware of the field it is configured for, but a tokenizer is not. Tokenizers read from a character stream (a Reader) and produce a
sequence of Token objects (a TokenStream).

Characters in the input stream may be discarded, such as whitespace or other delimiters. They may also be added to or replaced, such as
mapping aliases or abbreviations to normalized forms. A token contains various metadata in addition to its text value, such as the location at

Apache Solr Reference Guide 4.6 68

which the token occurs in the field. Because a tokenizer may produce tokens that diverge from the input text, you should not assume that the text
of the token is the same text that occurs in the field, or that its length is the same as the original text. It's also possible for more than one token to
have the same position or refer to the same offset in the original text. Keep this in mind if you use token metadata for things like highlighting
search results in the field text.

<fiel dType nane="text" class="solr. TextField">
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
</ anal yzer >
</fieldType>

The class named in the tokenizer element is not the actual tokenizer, but rather a class that implements the

org. apache. sol r. anal ysi s. Tokeni zer Fact ory interface. This factory class will be called upon to create new tokenizer instances as
needed. Objects created by the factory must derive from or g. apache. | ucene. anal ysi s. TokenSt r eam which indicates that they produce
sequences of tokens. If the tokenizer produces tokens that are usable as is, it may be the only component of the analyzer. Otherwise, the
tokenizer's output tokens will serve as input to the first filter stage in the pipeline.

A TypeTokenFi | t er Fact ory is available that creates a TypeTokenFi | t er that filters tokens based on their TypeAttribute, which is set in
factory. get StopTypes.

For a complete list of the available TokenFilters, see the section Tokenizers.

When To use a CharFilter vs. a TokenFilter

There are several pairs of CharFilters and TokenFilters that have related (ie: Mappi ngChar Fi | t er and ASCI | Fol di ngFi | t er) or nearly
identical (ie: Pat t er nRepl aceChar Fi | t er Fact ory and Pat t er nRepl aceFi | t er Fact or y) functionality and it may not always be obvious
which is the best choice.

The decision about which to use depends largely on which Tokenizer you are using, and whether you need to preprocess the stream of
characters.

For example, suppose you have a tokenizer such as St andar dTokeni zer and although you are pretty happy with how it works overall, you
want to customize how some specific characters behave. You could modify the rules and re-build your own tokenizer with j avacc, but it might be
easier to simply map some of the characters before tokenization with a Char Fi | t er.

What Is a Filter?

Like tokenizers, filters consume input and produce a stream of tokens. Filters also derive from or g. apache. | ucene. anal ysi s. TokenStr eamr
. Unlike tokenizers, a filter's input is another TokenStream. The job of a filter is usually easier than that of a tokenizer since in most cases a filter
looks at each token in the stream sequentially and decides whether to pass it along, replace it or discard it.

A filter may also do more complex analysis by looking ahead to consider multiple tokens at once, although this is less common. One hypothetical
use for such a filter might be to normalize state names that would be tokenized as two words. For example, the single token "california” would be
replaced with "CA", while the token pair "rhode" followed by "island" would become the single token "RI".

Because filters consume one TokenSt r eamand produce a new TokenSt r eam they can be chained one after another indefinitely. Each filter in
the chain in turn processes the tokens produced by its predecessor. The order in which you specify the filters is therefore significant. Typically, the
most general filtering is done first, and later filtering stages are more specialized.

<fiel dType nane="text" class="solr. TextField">
<anal yzer>
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr. StandardFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.EnglishPorterFilterFactory"/>
</ anal yzer >
</fieldType>

This example starts with Solr's standard tokenizer, which breaks the field's text into tokens. Those tokens then pass through Solr's standard filter,
which removes dots from acronyms, and performs a few other common operations. All the tokens are then set to lowercase, which will facilitate
case-insensitive matching at query time.

The last filter in the above example is a stemmer filter that uses the Porter stemming algorithm. A stemmer is basically a set of mapping rules that

maps the various forms of a word back to the base, or stem, word from which they derive. For example, in English the words "hugs", "hugging"
and "hugged" are all forms of the stem word "hug". The stemmer will replace all of these terms with "hug", which is what will be indexed. This

Apache Solr Reference Guide 4.6 69

means that a query for "hug" will match the term "hugged"”, but not "huge".

Conversely, applying a stemmer to your query terms will allow queries containing non stem terms, like "hugging", to match documents with
different variations of the same stem word, such as "hugged". This works because both the indexer and the query will map to the same stem

(*hug").
Word stemming is, obviously, very language specific. Solr includes several language-specific stemmers created by the Snowball generator that
are based on the Porter stemming algorithm. The generic Snowball Porter Stemmer Filter can be used to configure any of these language

stemmers. Solr also includes a convenience wrapper for the English Snowball stemmer. There are also several purpose-built stemmers for
non-English languages. These stemmers are described in Language Analysis.

Tokenizers

You configure the tokenizer for a text field type in schenma. xml with a <t okeni zer > element, as a child of <anal yzer >:

<fiel dType nane="text" class="solr. TextField">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StandardFilterFactory"/>
</ anal yzer >
</fieldType>

The class attribute names a factory class that will instantiate a tokenizer object when needed. Tokenizer factory classes implement the
org. apache. sol r. anal ysi s. Tokeni zer Fact ory. A TokenizerFactory's cr eat e() method accepts a Reader and returns a TokenStream.
When Solr creates the tokenizer it passes a Reader object that provides the content of the text field.

Arguments may be passed to tokenizer factories by setting attributes on the <t okeni zer > element.

<fiel dType nane="semi col onDel i m ted" class="solr. T TextField">
<anal yzer type="query">
<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern="; "/>
<anal yzer>

</fieldType>

The following sections describe the tokenizer factory classes included in this release of Solr.

For more information about Solr's tokenizers, see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

Tokenizers discussed in this section:

Standard Tokenizer

Classic Tokenizer

Keyword Tokenizer

Letter Tokenizer

Lower Case Tokenizer
N-Gram Tokenizer

Edge N-Gram Tokenizer

ICU Tokenizer

Path Hierarchy Tokenizer
Regular Expression Pattern Tokenizer
UAX29 URL Email Tokenizer
White Space Tokenizer
Related Topics

Standard Tokenizer

This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters. Delimiter characters are discarded, with the
following exceptions:

® Periods (dots) that are not followed by whitespace are kept as part of the token, including Internet domain names.

® Words are split at hyphens, unless there is a number in the word, in which case the token is not split and the numbers and hyphen(s) are
preserved.

Apache Solr Reference Guide 4.6 70

http://snowball.tartarus.org/
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

®* The "@" character is among the set of token-splitting punctuation, so email addresses are not preserved as single tokens.

The Standard Tokenizer supports Unicode standard annex UAX#29 word boundaries with the following token types: <ALPHANUM>, <NUM>,
<SQUTHEAST_ASI AN>, <| DEOGRAPHI C>, and <H RAGANA>.

Factory class: sol r. St andar dTokeni zer Fact ory
Arguments:
maxTokenLengt h: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by maxTokenLengt h.

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
</ anal yzer >

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please”, "email", "john.doe@foo.com"”, "by", "03-09", "re", "m37-xq"

Classic Tokenizer

The Classic Tokenizer preserves the same behavior as the Standard Tokenizer of Solr versions 3.1 and previous. It does not use the Unicode
standard annex UAX#29 word boundary rules that the Standard Tokenizer uses. This tokenizer splits the text field into tokens, treating whitespace
and punctuation as delimiters. Delimiter characters are discarded, with the following exceptions:

® Periods (dots) that are not followed by whitespace are kept as part of the token.

® Words are split at hyphens, unless there is a number in the word, in which case the token is not split and the numbers and hyphen(s) are
preserved.

® Recognizes Internet domain names and email addresses and preserves them as a single token.
Factory class: sol r. O assi cTokeni zer Fact ory
Arguments:
maxTokenLengt h: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by maxTokenLengt h.

Example:

<anal yzer>
<t okeni zer cl ass="solr.d assi cTokeni zer Factory"/>
</ anal yzer >

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please", "email", "john.doe@foo.com"”, "by", "03-09", "re

, "m37-xq"

Keyword Tokenizer

This tokenizer treats the entire text field as a single token.
Factory class: sol r. Keywor dTokeni zer Fact ory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. Keywor dTokeni zer Factory"/>
</ anal yzer >

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Apache Solr Reference Guide 4.6 71

http://unicode.org/reports/tr29/#Word_Boundaries
http://unicode.org/reports/tr29/#Word_Boundaries
http://unicode.org/reports/tr29/#Word_Boundaries

Out: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Letter Tokenizer

This tokenizer creates tokens from strings of contiguous letters, discarding all non-letter characters.
Factory class: sol r. Lett er Tokeni zer Fact ory

Arguments: None

Example:

<anal yzer >
<t okeni zer class="solr.LetterTokenizerFactory"/>
</ anal yzer >

In: "l can't."

out: "I", "can”, "t"

Lower Case Tokenizer

Tokenizes the input stream by delimiting at non-letters and then converting all letters to lowercase. Whitespace and non-letters are discarded.
Factory class: sol r. Lower CaseTokeni zer Fact ory

Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. Lower CaseTokeni zer Fact ory"/ >
</ anal yzer >

In: "l just LOVE my iPhone!"

"o

Out: "i", "just"’, "love", "my", “iphone"

N-Gram Tokenizer

Reads the field text and generates n-gram tokens of sizes in the given range.

Factory class: sol r. NG anTokeni zer Fact ory

Arguments:

m nG anSi ze: (integer, default 1) The minimum n-gram size, must be > 0.

maxQ& anSi ze: (integer, default 2) The maximum n-gram size, must be >= m nGr anfi ze.
Example:

Default behavior. Note that this tokenizer operates over the whole field. It does not break the field at whitespace. As a result, the space character
is included in the encoding.

<anal yzer>
<t okeni zer cl ass="sol r. NG anTokeni zer Factory"/>
</ anal yzer >

In: "hey man"

Out: "h", "e", ty"tt "'mt, "at, nt "he", "ey", "y ", "m",

ma’,

an

Example:

Apache Solr Reference Guide 4.6 72

With an n-gram size range of 4 to 5:

<anal yzer>
<t okeni zer cl ass="sol r. NG anTTokeni zer Factory" m nG anfSi ze="4" maxG anti ze="5"/>
</ anal yzer >

In: "bicycle"

Edge N-Gram Tokenizer

Reads the field text and generates edge n-gram tokens of sizes in the given range.

Factory class: sol r. EdgeNGr anifTokeni zer Fact ory

Arguments:

m nG anSi ze: (integer, default is 1) The minimum n-gram size, must be > 0.

maxQ& anti ze: (integer, default is 1) The maximum n-gram size, must be >= nm nG anfi ze.

si de: ("front" or "back", default is "front") Whether to compute the n-grams from the beginning (front) of the text or from the end (back).
Example:

Default behavior (min and max default to 1):

<anal yzer >
<t okeni zer cl ass="sol r. EdgeNG anifokeni zer Fact ory"/ >
</ anal yzer >

In: "babaloo”
Qut: "b"
Example:

Edge n-gram range of 2t0 5

<anal yzer >
<t okeni zer cl ass="sol r. EdgeNG anfTokeni zer Fact ory" m nG anfSi ze="2" maxG anti ze="5"/>
</ anal yzer >

In: "babaloo”
Out:"ba", "bab", "baba", "babal"
Example:

Edge n-gram range of 2 to 5, from the back side:

<anal yzer >

<t okeni zer cl ass="sol r. EdgeNG anifokeni zer Fact ory” m nG anfSi ze="2" nmaxG& anti ze="5"
si de="back"/ >
</ anal yzer >

In: "babaloo"

Out: "00", "loo", "aloo", "baloo”

ICU Tokenizer

Apache Solr Reference Guide 4.6

73

This tokenizer processes multilingual text and tokenizes it appropriately based on its script attribute.

You can customize this tokenizer's behavior by specifying per-script rule files. To add per-script rules, add a r ul ef i | es argument, which should
contain a comma-separated list of code: rul ef i | e pairs in the following format: four-letter ISO 15924 script code, followed by a colon, then a
resource path. For example, to specify rules for Latin (script code “Latn") and Cyrillic (script code "Cyrl"), you would enter

Latn:ny. Latin.rules.rbbi, Cyrl:nmy.Cyrillic.rules.rbbi.

The default sol r. | CUTokeni zer Fact ory provides UAX#29 word break rules tokenization (like sol r . St andar dTokeni zer), but also
includes custom tailorings for Hebrew (specializing handling of double and single quotation marks), and for syllable tokenization for Khmer, Lao,
and Myanmar.

Factory class: sol r. | CUTokeni zer Fact ory

Arguments:

rul ef i | e: a comma-separated list of code: rul ef i | e pairs in the following format: four-letter ISO 15924 script code, followed by a colon, then
a resource path.

Example:

<anal yzer>

<!-- no custom zation -->

<t okeni zer cl ass="sol r.|CUTokeni zer Factory"/>
</ anal yzer >

<anal yzer >
<t okeni zer class="solr.| CUTokeni zer Fact ory"
rulefiles="Latn:ny.Latin.rules.rbbi,Cyrl:my.Cyrillic.rules.rbbi"
/>
</ anal yzer >

Path Hierarchy Tokenizer

This tokenizer creates synonyms from file path hierarchies.
Factory class: sol r. Pat hHi er ar chyTokeni zer Factory
Arguments:

del i mi t er: (character, no default) You can specify the file path delimiter and replace it with a delimiter you provide. This can be useful for
working with backslash delimiters.

r epl ace: (character, no default) Specifies the delimiter character Solr uses in the tokenized output.

Example:

<fiel dType nane="text _path" class="solr. TextFi el d" positionlncrenment Gap="100">
<anal yzer >
<t okeni zer cl ass="sol r. Pat hH erarchyTokeni zer Factory" delimter="\" replace="/"/>
</ anal yzer >
</fieldType>

In: "c:\usr\local\apache”

Out: "c:", "c:/usr”, "c:/usr/local”, “c:/usr/local/apache"

Regular Expression Pattern Tokenizer

This tokenizer uses a Java regular expression to break the input text stream into tokens. The expression provided by the pattern argument can be
interpreted either as a delimiter that separates tokens, or to match patterns that should be extracted from the text as tokens.

See the Javadocs for j ava. uti | . regex. Pat t er n for more information on Java regular expression syntax.

Factory class: sol r. Pat t er nTokeni zer Fact ory

Apache Solr Reference Guide 4.6 74

http://userguide.icu-project.org/boundaryanalysis#TOC-RBBI-Rules
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Arguments:

pat t er n: (Required) The regular expression, as defined by in j ava. util . regex. Pattern.

gr oup: (Optional, default -1) Specifies which regex group to extract as the token(s). The value -1 means the regex should be treated as a
delimiter that separates tokens. Non-negative group numbers (>= 0) indicate that character sequences matching that regex group should be
converted to tokens. Group zero refers to the entire regex, groups greater than zero refer to parenthesized sub-expressions of the regex, counted
from left to right.

Example:

A comma separated list. Tokens are separated by a sequence of zero or more spaces, a comma, and zero or more spaces.

<anal yzer >
<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern="\s* \s*"/>
</ anal yzer >

In: “fee,fie, foe , fum, foo"

Out: "fee", "fie", "foe", "fum", "foo"

Example:

Extract simple, capitalized words. A sequence of at least one capital letter followed by zero or more letters of either case is extracted as a token.

<anal yzer >

<t okeni zer class="solr. PatternTokeni zer Factory" pattern="\[A-Z\]\[A-Za-z\]"
group="0"/>
</ anal yzer >

In: "Hello. My name is Inigo Montoya. You killed my father. Prepare to die."

Out: "Hello", "My", "Inigo”, "Montoya", "You", "Prepare"”

Example:

Extract part numbers which are preceded by "SKU", "Part" or "Part Number", case sensitive, with an optional semi-colon separator. Part numbers

must be all numeric digits, with an optional hyphen. Regex capture groups are numbered by counting left parenthesis from left to right. Group 3 is
the subexpression "[0-9-]+", which matches one or more digits or hyphens.

<anal yzer >

<t okeni zer cl ass="solr. PatternTokeni zer Fact ory"
pattern="(SKUl Part (\sNunmber)?): 2As(\[0-9-\]+)" group="3"/>
</ anal yzer >

In: "SKU: 1234, Part Number 5678, Part: 126-987"

Out: "1234", "5678", "126-987"

UAX29 URL Email Tokenizer

This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters. Delimiter characters are discarded, with the
following exceptions:

® Periods (dots) that are not followed by whitespace are kept as part of the token.

® Words are split at hyphens, unless there is a number in the word, in which case the token is not split and the numbers and hyphen(s) are
preserved.

® Recognizes top-level Internet domain names (validated against the white list in the IANA Root Zone Database when the tokenizer was
generated); email addresses; file://,http(s)://,andftp:// addresses; IPv4 and IPv6 addresses; and preserves them as a
single token.

The UAX29 URL Email Tokenizer supports Unicode standard annex UAX#29 word boundaries with the following token types: <ALPHANUM>,
<NUM>, <URL>, <EMAI L>, <SOUTHEAST_ASI AN>, <I DEOGRAPHI C>, and <HI RAGANA>.

Apache Solr Reference Guide 4.6 75

http://www.internic.net/zones/root.zone
http://unicode.org/reports/tr29/#Word_Boundaries

Factory class: sol r. UAX29URLEnai | Tokeni zer Factory

Arguments:

maxTokenLengt h: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by maxTokenLengt h.

Example:

<anal yzer >
<t okeni zer class="sol r. UAX29URLEnwsi | Tokeni zer Fact ory"/ >
</ anal yzer >

In: "Visit http://accarol.com/contact.htm?from=external&a=10 or e-mail bob.cratchet@accarol.com"

Out: "Visit", "http://accarol.com/contact.htm?from=external&a=10", "or", "email", "bob.cratchet@accarol.com"

White Space Tokenizer

Simple tokenizer that splits the text stream on whitespace and returns sequences of non-whitespace characters as tokens. Note that any
punctuation will be included in the tokenization.

Factory class: sol r. Wi t espaceTokeni zer Fact ory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
</ anal yzer >

In: "To be, or what?"

out: "To", "be.", "or", "what?"

Related Topics

® TokenizerFactories

Filter Descriptions

You configure each filter with a <fi | t er > elementin schema. xnm as a child of <anal yzer >, following the <t okeni zer > element. Filter
definitions should follow a tokenizer or another filter definition because they take a TokenSt r eamas input. For example.

<fiel dType nane="text" class="solr. TextField">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>...
</ anal yzer >
</fieldType>

The class attribute names a factory class that will instantiate a filter object as needed. Filter factory classes must implement the

org. apache. sol r. anal ysi s. TokenFi | t er Fact ory interface. Like tokenizers, filters are also instances of TokenStream and thus are
producers of tokens. Unlike tokenizers, filters also consume tokens from a TokenStream. This allows you to mix and match filters, in any order
you prefer, downstream of a tokenizer.

Arguments may be passed to tokenizer factories to modify their behavior by setting attributes on the <f i | t er > element. For example:

Apache Solr Reference Guide 4.6 76

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#TokenizerFactories

<fiel dType nane="semi col onDel i mted" class="solr. TextField">
<anal yzer type="query">
<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern="; " />
<filter class="solr.LengthFilterFactory" mn="2" max="7"/>
</ anal yzer >
</fieldType>

The following sections describe the filter factories that are included in this release of Solr.

For more information about Solr's filters, see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

Filters discussed in this section:

ASCII Folding Filter
Beider-Morse Filter

Classic Filter

Common Grams Filter
Collation Key Filter

Edge N-Gram Filter
English Minimal Stem Filter
Hunspell Stem Filter
Hyphenated Words Filter
ICU Folding Filter

ICU Normalizer 2 Filter
ICU Transform Filter

Keep Words Filter

KStem Filter

Length Filter

Lower Case Filter

N-Gram Filter

Numeric Payload Token Filter
Pattern Replace Filter
Phonetic Filter

Porter Stem Filter

Position Filter Factory
Remove Duplicates Token Filter
Reversed Wildcard Filter
Shingle Filter

Snowball Porter Stemmer Filter
Standard Filter

Stop Filter

Synonym Filter

Token Offset Payload Filter
Trim Filter

Type As Payload Filter
Type Token Filter

Word Delimiter Filter
Related Topics

ASCII Folding Filter

This filter converts alphabetic, numeric, and symbolic Unicode characters which are not in the Basic Latin Unicode block (the first 127 ASCII
characters) to their ASCII equivalents, if one exists. This filter converts characters from the following Unicode blocks:

C1 Controls and Latin-1 Supplement (PDF)
Latin Extended-A (PDF)

Latin Extended-B (PDF)

Latin Extended Additional (PDF)

Latin Extended-C (PDF)

Latin Extended-D (PDF)

IPA Extensions (PDF)

Phonetic Extensions (PDF)

Phonetic Extensions Supplement (PDF)
General Punctuation (PDF)
Superscripts and Subscripts (PDF)
Enclosed Alphanumerics (PDF)
Dingbats (PDF)

Supplemental Punctuation (PDF)

Apache Solr Reference Guide 4.6

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://www.unicode.org/charts/PDF/U0080.pdf
http://www.unicode.org/charts/PDF/U0100.pdf
http://www.unicode.org/charts/PDF/U0180.pdf
http://www.unicode.org/charts/PDF/U1E00.pdf
http://www.unicode.org/charts/PDF/U2C60.pdf
http://www.unicode.org/charts/PDF/UA720.pdf
http://www.unicode.org/charts/PDF/U0250.pdf
http://www.unicode.org/charts/PDF/U1D00.pdf
http://www.unicode.org/charts/PDF/U1D80.pdf
http://www.unicode.org/charts/PDF/U2000.pdf
http://www.unicode.org/charts/PDF/U2070.pdf
http://www.unicode.org/charts/PDF/U2460.pdf
http://www.unicode.org/charts/PDF/U2700.pdf
http://www.unicode.org/charts/PDF/U2E00.pdf

® Alphabetic Presentation Forms (PDF)
® Halfwidth and Fullwidth Forms (PDF)

Factory class: sol r. ASCl | Fol di ngFi | t er Fact ory
Arguments: None

Example:

<anal yzer >
<filter class="solr.ASCl | Fol di ngFilterFactory"/>
</ anal yzer >

In: "&" (Unicode character 00E1)

Out: "a" (ASCII character 97)

Beider-Morse Filter

Implements the Beider-Morse Phonetic Matching (BMPM) algorithm, which allows identification of similar names, even if they are spelled
differently or in different languages. More information about how this works is available in the section on Phonetic Matching.

Factory class: sol r. Bei der Mor seFi | t er Factory

Arguments:

nameType: Types of names. Valid values are GENERIC, ASHKENAZI, or SEPHARDIC. If not processing Ashkenazi or Sephardic hames, use
GENERIC.

rul eType: Types of rules to apply. Valid values are APPROX or EXACT.
concat : Defines if multiple possible matches should be combined with a pipe ("").

| anguageSet : The language set to use. The value "auto” will allow the Filter to identify the language, or a comma-separated list can be supplied.

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/ >
<filter class="solr.BeiderMrseFilterFactory" naneType="GENERI C' rul eType=" APPROX"
concat ="true" |anguageSet ="auto">
</filter>
</ anal yzer >

Classic Filter

This filter takes the output of the Classic Tokenizer and strips periods from acronyms and "'s" from possessives.
Factory class: sol r. O assi cFil ter Factory

Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="solr.d assi cTokeni zer Factory"/>
<filter class="solr.d assicFilterFactory"/>

</ anal yzer >

In: ".B.M. cat's can't"

Tokenizer to Filter: "I.B.M", "cat's", "can't

Out: "IBM", "cat", "can't"

Apache Solr Reference Guide 4.6 78

http://www.unicode.org/charts/PDF/UFB00.pdf
http://www.unicode.org/charts/PDF/UFF00.pdf

Common Grams Filter

This filter creates word shingles by combining common tokens such as stop words with regular tokens. This is useful for creating phrase queries
containing common words, such as "the cat." Solr normally ignores stop words in queried phrases, so searching for "the cat" would return all
matches for the word "cat."

Factory class: sol r. CormonGr ansFi | t er Factory

Arguments:

wor ds: (a common word file in .txt format) Provide the name of a common word file, such as st opwor ds. t xt .

f or mat : (optional) If the stopwords list has been formatted for Snowball, you can specify f or mat =" snowbal | " so Solr can read the stopwords
file.

i gnor eCase: (boolean) If true, the filter ignores the case of words when comparing them to the common word file. The default is false.

Example:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.CommonG ansFilterFactory" words="stopwords.txt"
i gnoreCase="true"/>
</ anal yzer >

In: "the Cat"
Tokenizer to Filter: "the", "Cat"

Out: "the_cat"

Collation Key Filter

Collation allows sorting of text in a language-sensitive way. It is usually used for sorting, but can also be used with advanced searches. We've
covered this in much more detail in the section on Unicode Collation.

Edge N-Gram Filter

This filter generates edge n-gram tokens of sizes within the given range.
Factory class: sol r. EdgeNG anFi | t er Fact ory

Arguments:

m nG anSi ze: (integer, default 1) The minimum gram size.

maxQ& anSi ze: (integer, default 1) The maximum gram size.

Example:

Default behavior.

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="sol r.EdgeNG anfFilterFactory"/>

</ anal yzer >

In: "four score and twenty"

Tokenizer to Filter: "four", "score", "and", "twenty"
Out: "f, "s", "a", "t"
Example:

Arange of 1to 4.

Apache Solr Reference Guide 4.6 79

<anal yzer >

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.EdgeNG anFilterFactory" m nG anti ze="1" maxG anti ze="4"/>
</ anal yzer >

In: "four score"

Tokenizer to Filter: "four", "score"

Out: "f*, "fo", "fou", "four", "s", "sc", "sco", "scor"
Example:

Arange of 4to 6.

<anal yzer>

<t okeni zer cl ass="solr. St andar dTokeni zer Factory"/>

<filter class="solr.EdgeNG antilterFactory" m nG anfi ze="4" maxG anti ze="6"/>
</ anal yzer >

In: "four score and twenty"

Tokenizer to Filter: "four", "score", "and", "twenty"

Out: "four", "sco", "scor", "twen", "twent", "twenty"

English Minimal Stem Filter

This filter stems plural English words to their singular form.
Factory class: sol r. Engl i shM ni mal Stenfi | ter Factory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.EnglishM nimal StenfilterFactory"/>
</ anal yzer >

In: "dogs cats"
Tokenizer to Filter: "dogs", "cats"

Out: "dog", "cat"

Hunspell Stem Filter

The Hunspell Stem Filter provides support for several languages. You must provide the dictionary (. di c) and rules (. af f) files for each language
you wish to use with the Hunspell Stem Filter. You can download those language files here. Be aware that your results will vary widely based on
the quality of the provided dictionary and rules files. For example, some languages have only a minimal word list with no morphological
information. On the other hand, for languages that have no stemmer but do have an extensive dictionary file, the Hunspell stemmer may be a
good choice.

Factory class: sol r. Hunspel | StenfFi | t er Factory

Arguments:

di cti onary: (required) The path of a dictionary file.

af fi x: (required) The path of a rules file.

i gnor eCase: (boolean) controls whether matching is case sensitive or not. The default is false.

strict Af fi xPar si ng: (boolean) controls whether the affix parsing is strict or not. If true, an error while reading an affix rule causes a
ParseException, otherwise is ignored. The default is true.

Apache Solr Reference Guide 4.6 80

http://wiki.apache.org/solr/Hunspell
http://wiki.services.openoffice.org/wiki/Dictionaries

Example:

<anal yzer type="index">
<t okeni zer class="sol r. Wit espaceTokeni zer Factory"/ >
<filter class="solr.Hunspell StenFilterFactory"
di ctionary="en_GB. di c"
af fix="en _GB. aff"
i gnor eCase="true"
strictAffixParsing="true" />
</ anal yzer >

In: "jump jumping jumped"

Hyphenated Words Filter

This filter reconstructs hyphenated words that have been tokenized as two tokens because of a line break or other intervening whitespace in the
field test. If a token ends with a hyphen, it is joined with the following token and the hyphen is discarded. Note that for this filter to work properly,
the upstream tokenizer must not remove trailing hyphen characters. This filter is generally only useful at index time.

Factory class: sol r. Hyphenat edWor dsFi | t er Fact ory

Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="sol r.Hyphenat edWrdsFilterFactory"/>
</ anal yzer >

In: "A hyphen- ated word"
Tokenizer to Filter: "A", "hyphen-", "ated", "word"

Out: "A", "hyphenated", "word"

ICU Folding Filter

This filter is a custom Unicode normalization form that applies the foldings specified in Unicode Technical Report 30 in addition to the
NFKC_Casef ol d normalization form as described in ICU Normalizer 2 Filter. This filter is a better substitute for the combined behavior of the AS
Cll Folding Filter, Lower Case Filter, and ICU Normalizer 2 Filter.

To use this filter, see sol r/ cont ri b/ anal ysi s- ext ras/ README. t xt for instructions on which jars you need to add to your
sol r_home/lib.

Factory class: sol r. | CUFol di ngFi | t er Fact ory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.|CUrol dingFilterFactory"/>

</ anal yzer >

For detailed information on this normalization form, see http://www.unicode.org/reports/tr30/tr30-4.html.

Apache Solr Reference Guide 4.6 81

http://www.unicode.org/reports/tr30/tr30-4.html
http://www.unicode.org/reports/tr30/tr30-4.html

ICU Normalizer 2 Filter

This filter factory normalizes text according to one of five Unicode Normalization Forms as described in Unicode Standard Annex #15:

NFC: (name="nfc" mode="compose") Normalization Form C, canonical decomposition

NFD: (name="nfc" mode="decompose") Normalization Form D, canonical decomposition, followed by canonical composition
NFKC: (name="nfkc" mode="compose") Normalization Form KC, compatibility decomposition

NFKD: (name="nfkc" mode="decompose") Normalization Form KD, compatibility decomposition, followed by canonical composition
NFKC_Casefold: (name="nfkc_cf" mode="compose") Normalization Form KC, with additional Unicode case folding. Using the ICU
Normalizer 2 Filter is a better-performing substitution for the Lower Case Filter and NFKC normalization.

Factory class: sol r. | CUNor nal i zer 2Fi | t er Factory

Arguments:

name: (string) The name of the normalization form; nf c, nf d, nf kc, nf kd, nf kc_cf

node: (string) The mode of Unicode character composition and decomposition; conpose or deconpose

Example:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.|CUNormalizer?2FilterFactory" name="nkc_cf" node="conpose"/>
</ anal yzer >

For detailed information about these Unicode Normalization Forms, see http://unicode.org/reports/tr15/.

To use this filter, see sol r/ cont ri b/ anal ysi s- ext ras/ READVE. t xt for instructions on which jars you need to add to your
solr_home/lib.

ICU Transform Filter

This filter applies ICU Tranforms to text. This filter supports only ICU System Transforms. Custom rule sets are not supported.
Factory class: sol r. | CUTr ansf ornFi | t er Fact ory
Arguments:

i d: (string) The identifier for the ICU System Transform you wish to apply with this filter. For a full list of ICU System Transforms, see http://demo.i
cu-project.org/icu-bin/translit? TEMPLATE_FILE=data/translit_rule_main.html.

Example:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.|CUTransfornFilterFactory" id="Traditional-Sinplified"/>
</ anal yzer >

For detailed information about ICU Transforms, see http://userguide.icu-project.org/transforms/general.

To use this filter, see sol r/ cont ri b/ anal ysi s- ext ras/ README. t xt for instructions on which jars you need to add to your
solr_home/lib.

Keep Words Filter

This filter discards all tokens except those that are listed in the given word list. This is the inverse of the Stop Words Filter. This filter can be useful
for building specialized indices for a constrained set of terms.

Factory class: sol r. KeepWor dFi | t er Fact ory
Arguments:

wor ds: (required) Path of a text file containing the list of keep words, one per line. Blank lines and lines that begin with "#" are ignored. This may
be an absolute path, or a simple filename in the Solr config directory.

i gnor eCase: (true/false) If true then comparisons are done case-insensitively. If this argument is true, then the words file is assumed to contain

Apache Solr Reference Guide 4.6 82

http://unicode.org/reports/tr15/
http://unicode.org/reports/tr15/
http://userguide.icu-project.org/transforms/general
http://demo.icu-project.org/icu-bin/translit?TEMPLATE_FILE=data/translit_rule_main.html
http://demo.icu-project.org/icu-bin/translit?TEMPLATE_FILE=data/translit_rule_main.html
http://userguide.icu-project.org/transforms/general

only lowercase words. The default is false.
Example:

Where keepwor ds. t xt contains:

happy

funny

silly

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.KeepWrdFilterFactory" words="keepwords.txt"/>
</ anal yzer >

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny"
Out: "funny"

Example:

Same keepwor ds. t xt, case insensitive:

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.KeepWrdFilterFactory" words="keepwords.txt" ignoreCase="true"/>
</ anal yzer >

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny"
Out: "Happy", "funny"”

Example:

Using LowerCaseFilterFactory before filtering for keep words, no i gnor eCase flag.

<anal yzer>

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="sol r.KeepWrdFilterFactory" words="keepwords.txt"/>
</ anal yzer >

In: "Happy, sad or funny"
Tokenizer to Filter: "Happy", "sad", "or", "funny"
Filter to Filter: "happy", "sad", "or", "funny"

Out: "happy", "funny”

KStem Filter

KStem is an alternative to the Porter Stem Filter for developers looking for a less aggressive stemmer. KStem was written by Bob Krovetz, ported
to Lucene by Sergio Guzman-Lara (UMASS Amherst). This stemmer is only appropriate for English language text.

Factory class: sol r. KStenfFi | ter Factory

Arguments: None

Apache Solr Reference Guide 4.6 83

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.KStenFilterFactory"/>

</ anal yzer >

In: "jump jumping jumped"

Length Filter

This filter passes tokens whose length falls within the min/max limit specified. All other tokens are discarded.
Factory class: sol r. Lengt hFi | t er Factory

Arguments:

m n: (integer, required) Minimum token length. Tokens shorter than this are discarded.

max: (integer, required, must be >= min) Maximum token length. Tokens longer than this are discarded.

Example:

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.LengthFilterFactory" mn="3" nmax="7"/>
</ anal yzer >

In: "turn right at Albuguerque"
Tokenizer to Filter: "turn”, "right", "at", "Albuquerque”

Out: "turn", "right"

Lower Case Filter

Converts any uppercase letters in a token to the equivalent lowercase token. All other characters are left unchanged.
Factory class: sol r. Lower CaseFi | t er Fact ory

Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>

</ anal yzer >

In: "Down With CamelCase"
Tokenizer to Filter: "Down", "With", "CamelCase"

Out: "down", "with", "camelcase"

N-Gram Filter

Generates n-gram tokens of sizes in the given range. Note that tokens are ordered by position and then by gram size.

Factory class: sol r. NG anfFi | t er Fact ory

Apache Solr Reference Guide 4.6

84

Arguments:

m nG anfi ze: (integer, default 1) The minimum gram size.
maxQ& anti ze: (integer, default 2) The maximum gram size.
Example:

Default behavior.

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.NG anFilterFactory"/>

</ anal yzer >

In: "four score"

Tokenizer to Filter: "four", "score"

[T T TR TR TUR TR B TR TIR TR TR TR T}

Out: "f*, "o", "u", "r", "fo", "ou", "ur", "s", "c", "0", "r", "e",

non

sC’,

co,

non

or", "re"
Example:

Arange of 1to 4.

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.NG anFilterFactory" m nG anti ze="1" maxG anfti ze="4"/>
</ anal yzer >

In: "four score"

Tokenizer to Filter: "four", "score"

Out: "f*, "fo", "fou", "four", "s", "sc", "sco", "scor"
Example:

Arange of 3to 5.

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.NG anFilterFactory" m nG anSi ze="3" naxG anti ze="5"/>
</ anal yzer >

In: "four score"

Tokenizer to Filter: "four", "score"

Out: "fou", "four", "our", "sco", "scor", "score", "cor", "core", "ore"

Numeric Payload Token Filter

This filter adds a numeric floating point payload value to tokens that match a given type. Refer to the Javadoc for the
org. apache. | ucene. anal ysi s. Token class for more information about token types and payloads.

Factory class: sol r. Nuneri cPayl oadTokenFi | t er Fact ory

Arguments:

pay!l oad: (required) A floating point value that will be added to all matching tokens.

t ypeMat ch: (required) A token type name string. Tokens with a matching type name will have their payload set to the above floating point value.

Example:

Apache Solr Reference Guide 4.6 85

<anal yzer >

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.NunericPayl oadTokenFi |l terFactory" payl oad="0. 75"
t ypeMat ch="wor d"/ >
</ anal yzer >

In: "bing bang boom"

Tokenizer to Filter: "bing", "bang", "boom"

Out: "bing"[0.75], "bang"[0.75], "boom"[0.75]

Pattern Replace Filter

This filter applies a regular expression to each token and, for those that match, substitutes the given replacement string in place of the matched
pattern. Tokens which do not match are passed though unchanged.

Factory class: sol r. Patt er nRepl aceFi | ter
Arguments:
pat t er n: (required) The regular expression to test against each token, as per j ava. util . regex. Pattern.

repl acenent : (required) A string to substitute in place of the matched pattern. This string may contain references to capture groups in the regex
pattern. See the Javadoc for j ava. uti | . regex. Mat cher.

repl ace: ("all" or "first", default "all") Indicates whether all occurrences of the pattern in the token should be replaced, or only the first.
Example:

Simple string replace:

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.PatternRepl aceFilter" pattern="cat" replacenent="dog"/>
</ anal yzer >

In: "cat concatenate catycat"

Tokenizer to Filter: "cat", "concatenate", "catycat"
Out: "dog", "condogenate”, "dogydog"
Example:

String replacement, first occurrence only:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.PatternRepl aceFilter" pattern="cat
replace="first"/>
</ anal yzer >

repl acenent =" dog”

In: "cat concatenate catycat"

Tokenizer to Filter: "cat", "concatenate", "catycat"
Out: "dog", "condogenate”, "dogycat"

Example:

More complex pattern with capture group reference in the replacement. Tokens that start with non-numeric characters and end with digits will
have an underscore inserted before the numbers. Otherwise the token is passed through.

Apache Solr Reference Guide 4.6 86

<anal yzer >

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.PatternReplaceFilter" pattern="(\D+)(\d+)$"
repl acenent ="$1_$2"/>
</ anal yzer >

In: "cat foo1234 9987 blah1234fo0"
Tokenizer to Filter: "cat", "foo1234", "9987", "blah1234fo0"

Out: "cat", "foo_1234", "9987", "blah1234fo0"

Phonetic Filter
This filter creates tokens using one of the phonetic encoding algorithms in the or g. apache. cormons. codec.language package.
Factory class: sol r. Phoneti cFil ter Factory

Arguments:

encoder : (required) The name of the encoder to use. The encoder name must be one of the following (case insensitive): "DoubleMetaphone”, "M
etaphone", "Soundex"”, "RefinedSoundex", "Caverphone", or "ColognePhonetic"

i nj ect : (true/false) If true (the default), then new phonetic tokens are added to the stream. Otherwise, tokens are replaced with the phonetic
equivalent. Setting this to false will enable phonetic matching, but the exact spelling of the target word may not match.

maxCodelLengt h: (integer) The maximum length of the code to be generated by the Metaphone or Double Metaphone encoders.
Example:

Default behavior for DoubleMetaphone encoding.

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.PhoneticFilterFactory" encoder="Doubl eMet aphone"/ >
</ anal yzer >

In: “four score and twenty"
Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)
Out: "four"(1), "FR"(1), "score"(2), "SKR"(2), "and"(3), "ANT"(3), “twenty"(4), "TNT"(4)

The phonetic tokens have a position increment of 0, which indicates that they are at the same position as the token they were derived from
(immediately preceding).

Example:

Discard original token.

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.PhoneticFilterFactory" encoder="Doubl eMet aphone"
inject="fal se"/>
</ anal yzer >

In: "four score and twenty"
Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)
Out: "FR"(1), "SKR"(2), "ANT"(3), "TWNT"(4)

Example:

Apache Solr Reference Guide 4.6 87

http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/DoubleMetaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Metaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Metaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Soundex.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/RefinedSoundex.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Caverphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/ColognePhonetic.html

Default Soundex encoder.

<anal yzer>

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.PhoneticFilterFactory" encoder="Soundex"/>
</ anal yzer >

In: “four score and twenty"
Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)

out: “four"(1), "F600"(1), “score"(2), "S600"(2), “and"(3), "A530"(3), “twenty"(4), "T530"(4)

Porter Stem Filter

This filter applies the Porter Stemming Algorithm for English. The results are similar to using the Snowball Porter Stemmer with the

| anguage="Engl i sh" argument. But this stemmer is coded directly in Java and is not based on Snowball. It does not accept a list of protected
words and is only appropriate for English language text. However, it has been benchmarked as four times faster than the English Snowball
stemmer, so can provide a performance enhancement.

Factory class: sol r. Porter Stenfi | t er Factory

Arguments: None

Example:

<anal yzer type="index">
<t okeni zer class="solr. StandardTokeni zer Factory "/>
<filter class="solr.PorterStenFilterFactory"/>

</ anal yzer >

In: "jump jumping jumped"

Position Filter Factory

This filter sets the position increment values of all tokens in a token stream except the first, which retains its original position increment value. This
filter has been deprecated and will be removed in Solr 5.

Factory class: sol r. Posi ti onl ncrenment Fi |l ter Factory
Arguments:
posi ti onl ncrenment : (integer, default = 0) The position increment value to apply to all tokens in a token stream except the first.

Example:

<anal yzer>

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.PositionFilterFactory" positionlncrenent="1"/>
</ anal yzer >

In: "hello world"
Tokenizer to Filter: "hello", "world"

Out: "hello" (token position 1), "world" (token position 2)

Remove Duplicates Token Filter

The filter removes duplicate tokens in the stream. Tokens are considered to be duplicates if they have the same text and position values.

Apache Solr Reference Guide 4.6 88

http://markmail.org/thread/d2c443z63z37rwf6

Factory class: sol r. RenoveDupl i cat esTokenFi | t er Fact ory
Arguments: None
Example:

One example of where RenoveDupl i cat esTokenFi | t er Fact ory is in situations where a synonym file is being used in conjuntion with a
stemmer causes some synonyms to be reduced to the same stem. Consider the following entry from a synonymns. t xt file:

Tel evi sion, Televisions, TV, TVs

When used in the following configuration:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.SynonynFilterFactory" synonyns="synonyns.txt"/>
<filter class="solr.EnglishMninal StenfFilterFactory"/>
<filter class="sol r. RenoveDuplicatesTokenFilterFactory"/>
</ anal yzer >

In: "Watch TV"

Tokenizer to Synonym Filter: "Watch"(1) "TV"(2)

Synonym Filter to Stem Filter: "Watch"(1) "Television"(2) "Televisions"(2) "TV"(2) "TVs"(2)
Stem Filter to Remove Dups Filter: "Watch"(1) "Television"(2) "Television"(2) "TV"(2) "TV"(2)

Out: "Watch"(1) "Television"(2) "TV"(2)

Reversed Wildcard Filter

This filter reverses tokens to provide faster leading wildcard and prefix queries. Tokens without wildcards are not reversed.
Factory class: sol r. ReveresedW | dcardFi | t er Factory
Arguments:

wi t hOri gi nal (boolean) If true, the filter produces both original and reversed tokens at the same positions. If false, produces only reversed
tokens.

maxPosAst eri sk (integer, default = 2) The maximum position of the asterisk wildcard (*') that triggers the reversal of the query term. Terms with
asterisks at positions above this value are not reversed.

maxPosQuest i on (integer, default = 1) The maximum position of the question mark wildcard ('?") that triggers the reversal of query term. To
reverse only pure suffix queries (queries with a single leading asterisk), set this to 0 and maxPosAst eri sk to 1.

maxFracti onAst eri sk (float, default = 0.0) An additional parameter that triggers the reversal if asterisk (**') position is less than this fraction of
the query token length.

m nTrai | i ng (integer, default = 2) The minimum number of trailing characters in a query token after the last wildcard character. For good
performance this should be set to a value larger than 1.

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.ReversedW | dcardFilterFactory" wthQOriginal ="true"
maxPosAst eri sk="2" maxPosQuestion="1" minTrailing="2" maxFracti onAsterisk="0"/>
</ anal yzer>

In: "*foo *bar"

Tokenizer to Filter: "*foo", "*bar"

Apache Solr Reference Guide 4.6 89

Out: "oof*", "rab*"

Shingle Filter

This filter constructs shingles, which are token n-grams, from the token stream. It combines runs of tokens into a single token.
Factory class: sol r. Shi ngl eFi | t er Factory

Arguments:

m nShi ngl eSi ze: (integer, default 2) The minimum number of tokens per shingle.

maxShi ngl eSi ze: (integer, must be >= 2, default 2) The maximum number of tokens per shingle.

out put Uni gr ans: (trueffalse) If true (the default), then each individual token is also included at its original position.

out put Uni gr ansl f NoShi ngl es: (true/false) If false (the default), then individual tokens will be output if no shingles are possible.
t okenSepar at or : (string, default is " ") The default string to use when joining adjacent tokens to form a shingle.

Example:

Default behavior.

<anal yzer>
<t okeni zer class="solr. StandardTokeni zer Factory"/>
<filter class="solr. ShingleFilterFactory"/>

</ anal yzer >

In: "To be, or what?"

Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)

Out: "To"(1), "To be"(1), "be"(2), "be or"(2), "or"(3), "or what"(3), "what"(4)
Example:

A shingle size of four, do not include original token.

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.ShingleFilterFactory" naxShingleSi ze="4"
out put Uni grans="f al se"/ >
</ anal yzer >

In: "To be, or not to be."
Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "not"(4), "to"(5), "be"(6)

Out: "To be"(1), “To be or"(1), "To be or not"(1), "be or"(2), "be or not"(2), "be or not to"(2), "or not"(3), "or not to"(3), “or not to be"(3), "not to"(4),
"not to be"(4), "to be"(5)

Snowball Porter Stemmer Filter

This filter factory instantiates a language-specific stemmer generated by Snowball. Snowball is a software package that generates pattern-based
word stemmers. This type of stemmer is not as accurate as a table-based stemmer, but is faster and less complex. Table-driven stemmers are
labor intensive to create and maintain and so are typically commercial products.

Solr contains Snowball stemmers for Armenian, Basque, Catalan, Danish, Dutch, English, Finnish, French, German, Hungarian, Italian,
Norwegian, Portuguese, Romanian, Russian, Spanish, Swedish and Turkish. For more information on Snowball, visit http://snowball.tartarus.org/.

St opFi | t er Fact ory, CormonGr ansFi | t er Fact ory, and CoomonG ansQuer yFi | t er Fact or y can optionally read stopwords in Snowball
format (specify f or mat =" snowbal | " in the configuration of those FilterFactories).

Factory class: sol r. Snowbal | PorterFil ter Factory

Arguments:

Apache Solr Reference Guide 4.6 90

http://snowball.tartarus.org/

| anguage: (default "English") The name of a language, used to select the appropriate Porter stemmer to use. Case is significant. This string is
used to select a package name in the "org.tartarus.snowball.ext" class hierarchy.

pr ot ect ed: Path of a text file containing a list of protected words, one per line. Protected words will not be stemmed. Blank lines and lines that
begin with "#" are ignored. This may be an absolute path, or a simple file name in the Solr config directory.

Example:

Default behavior:

<anal yzer >
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.Snowbal | PorterFilterFactory"/>
</ anal yzer >

In: "flip flipped flipping"

Tokenizer to Filter: "flip", "flipped", "flipping"
Out: "flip", "flip", "flip"

Example:

French stemmer, English words:

<anal yzer>

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.Snowbal | PorterFilterFactory" |anguage="French"/>
</ anal yzer >

In: "flip flipped flipping"

Tokenizer to Filter: "flip", "flipped", "flipping"
Out: "flip", "flipped", "flipping"

Example:

Spanish stemmer, Spanish words:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Spanish"/>
</ anal yzer >

In: "cante canta"
Tokenizer to Filter: "cante", "canta"

Out: "cant", "cant"

Standard Filter

appropriate term-type to recognize acronyms and words with apostrophes.
Factory class: sol r. St andar dFi | t er Fact ory

Arguments: None

!, This filter is no longer operational in Solr when the | uceneMat chVer si on (in sol rconfi g. xm) is higher than "3.1".

]

Apache Solr Reference Guide 4.6 91

Stop Filter

This filter discards, or stops analysis of, tokens that are on the given stop words list. A standard stop words list is included in the Solr config
directory, named st opwor ds. t xt , which is appropriate for typical English language text.

Factory class: sol r. St opFi | ter Factory
Arguments:

wor ds: (optional) The path to a file that contains a list of stop words, one per line. Blank lines and lines that begin with "#" are ignored. This may
be an absolute path, or path relative to the Solr config directory.

f or mat : (optional) If the stopwords list has been formatted for Snowball, you can specify f or mat =" snowbal | * so Solr can read the stopwords
file.

i gnor eCase: (true/false, default false) Ignore case when testing for stop words. If true, the stop list should contain lowercase words.

I Asof Solr 4.4, the enabl ePosi ti onl ncr ement s argument is no longer supported.

Example:

Case-sensitive matching, capitalized words not stopped. Token positions skip stopped words.

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.StopFilterFactory" words="stopwords.txt"/>
</ anal yzer >

In: "To be or what?"
Tokenizer to Filter: "To"(2), "be"(2), "or"(3), "what"(4)
Out: "To"(1), "what"(4)

Example:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.StopFilterFactory" words="stopwords.txt" ignoreCase="true"/>
</ anal yzer >

In: "To be or what?"
Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)

Out: "what"(4)

Synonym Filter

This filter does synonym mapping. Each token is looked up in the list of synonyms and if a match is found, then the synonym is emitted in place of
the token. The position value of the new tokens are set such they all occur at the same position as the original token.

Factory class: sol r. Synonyn¥Fi | t er Fact ory
Arguments:

synonyns: (required) The path of a file that contains a list of synonyms, one per line. Blank lines and lines that begin with "#" are ignored. This
may be an absolute path, or path relative to the Solr config directory.There are two ways to specify synonym nappi ngs:

® A comma-separated list of words. If the token matches any of the words, then all the words in the list are substituted, which will include
the original token.

®* Two comma-separated lists of words with the symbol "=>" between them. If the token matches any word on the left, then the list on the
right is substituted. The original token will not be included unless it is also in the list on the right.

Apache Solr Reference Guide 4.6 92

For the following examples, assume a synonyms file named nysynonyns. t xt :

couch, sof a, di van

teh => the
huge, gi nor nous, hunmungous => | arge
smal | => tiny,teeny, weeny

Example:

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.SynonynFilterFactory" synonyns="nysynonyns.txt"/>
</ anal yzer >

In: "teh small couch"
Tokenizer to Filter: "teh"(1), "small"(2), "couch"(3)
Out: "the"(1), "tiny"(2), "teeny"(2), "weeny"(2), "couch"(3), "sofa"(3), "divan"(3)

Example:

<anal yzer>

<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/>

<filter class="solr.SynonynFilterFactory" synonyns="nysynonyns.txt"/>
</ anal yzer >

In: "teh ginormous, humungous sofa"
Tokenizer to Filter: "teh"(1), "ginormous"(2), "humungous"(3), "sofa"(4)

Out: "the"(1), "large"(2), "large"(3), "couch”(4), "sofa"(4), "divan"(4)

Token Offset Payload Filter

This filter adds the numeric character offsets of the token as a payload value for that token.
Factory class: sol r. TokenO f set Payl oadTokenFi | t er Fact ory

Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="sol r. TokenO f set Payl oadTokenFi | t er Fact ory"/ >
</ anal yzer >

In: "bing bang boom"
Tokenizer to Filter: "bing", "bang", "boom"

Out: "bing"[0,4], "bang"[5,9], "boom"[10,14]

Trim Filter

This filter trims leading and/or trailing whitespace from tokens. Most tokenizers break tokens at whitespace, so this filter is most often used for

special situations.
Factory class: sol r. Tri nFi |l ter Fact ory

Arguments:

Apache Solr Reference Guide 4.6

93

updat eOr f set s: (true/false, default false) If true, the token's start/end offsets are adjusted to account for any whitespace that was removed.
Example:

The PatternTokenizerFactory configuration used here splits the input on simple commas, it does not remove whitespace.

<anal yzer>
<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern=","/>
<filter class="solr.TrinFilterFactory"/>

</ anal yzer >

In: "one, two , three ,four *
Tokenizer to Filter: "one", " two ", " three ", “four "

Out: "one", "twao", "three", "four"

Type As Payload Filter

This filter adds the token's type, as an encoded byte sequence, as its payload.
Factory class: sol r. TypeAsPayl oadTokenFi | t er Fact ory

Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="sol r. TypeAsPayl oadTokenFi |l terFactory"/>
</ anal yzer >

In: "Pay Bob's 1.0.U."
Tokenizer to Filter: "Pay", "Bob's", ".O.U."

Out: "Pay"[<ALPHANUM>], "Bob's"[<APOSTROPHE>], "I.0.U."[<KACRONYM>]

Type Token Filter

This filter blacklists or whitelists a specified list of token types, assuming the tokens have type metadata associated with them. For example, the U
AX29 URL Email Tokenizer emits "<URL>" and "<EMAIL>" typed tokens, as well as other types. This filter would allow you to pull out only e-mail
addresses from text as tokens, if you wish.

Factory class: sol r. TypeTokenFi |l t er Fact ory

Arguments:

t ypes: Defines the location of a file of types to filter.

useWi tel i st:Iftrue, the file defined in t ypes should be used as include list. If false, or undefined, the file defined in t ypes is used as a
blacklist.

I Asof Solr 4.4, the enabl ePosi ti onl ncr ement s argument is no longer supported.

Example:

<anal yzer>

<filter class="solr.TypeTokenFilterFactory" types="stoptypes.txt"
useWhitelist="true"/>
</ anal yzer >

Apache Solr Reference Guide 4.6 94

Word Delimiter Filter

This filter splits tokens at word delimiters. The rules for determining delimiters are determined as follows:
® A change in case within a word: "CamelCase" -> "Camel", "Case". This can be disabled by setting spl i t OnCaseChange="0".

® A transition from alpha to numeric characters or vice versa: "Gonzo5000" -> "Gonzo", "5000" "4500XL" -> "4500", "XL". This can be
disabled by setting spl i t OnNun®eri cs="0".

® Non-alphanumeric characters (discarded): "hot-spot" -> "hot", "spot"

® Atrailing "'s" is removed: "O'Reilly's" -> "O", "Reilly"

® Any leading or trailing delimiters are discarded: "--hot-spot--" -> "hot", "spot"
Factory class: sol r. WordDel i miterFilterFactory
Arguments:

gener at eWor dPar t s: (integer, default 1) If non-zero, splits words at delimiters. For example:"CamelCase", "hot-spot" -> "Camel", "Case", "hot",
"spot”

gener at eNunber Par t s: (integer, default 1) If non-zero, splits numeric strings at delimiters:"1947-32" ->"1947", "32"

spl i t OnCaseChange: (integer, default 1) If 0, words are not split on camel-case changes:"BugBlaster-XL" -> "BugBlaster", "XL". Example 1
below illustrates the default (non-zero) splitting behavior.

splitOnNuneri cs: (integer, default 1) If 0, don't split words on transitions from alpha to numeric:"FemBot3000" -> "Fem", "Bot3000"
cat enat eWor ds: (integer, default 0) If non-zero, maximal runs of word parts will be joined: "hot-spot-sensor's" -> "hotspotsensor”
cat enat eNunber s: (integer, default 0) If non-zero, maximal runs of number parts will be joined: 1947-32" -> "194732"

cat enat eAl | : (0/1, default 0) If non-zero, runs of word and number parts will be joined: "Zap-Master-9000" -> "ZapMaster9000"

preserveOri gi nal : (integer, default O) If non-zero, the original token is preserved: "Zap-Master-9000" -> "Zap-Master-9000", "Zap", "Master",
"9000"

pr ot ect ed: (optional) The pathname of a file that contains a list of protected words that should be passed through without splitting.
st enEngl i shPossessi ve: (integer, default 1) If 1, strips the possessive "'s" from each subword.
Example:

Default behavior. The whitespace tokenizer is used here to preserve non-alphanumeric characters.

<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.WrdDelimterFilterFactory"/>

</ anal yzer >

In: "hot-spot RoboBlaster/9000 100XL"

Tokenizer to Filter: "hot-spot”, "RoboBlaster/9000", "100XL"
Out: "hot", "spot", "Robo", "Blaster”, "9000", "100", "XL"
Example:

Do not split on case changes, and do not generate number parts. Note that by not generating number parts, tokens containing only numeric parts
are ultimately discarded.

<anal yzer>

<t okeni zer class="sol r. Wit espaceTokeni zer Factory"/ >

<filter class="solr.WrdDelimterFilterFactory" generateNunberParts="0"
spl i t OnCaseChange="0"/ >
</ anal yzer >

Apache Solr Reference Guide 4.6 95

In: "hot-spot RoboBlaster/9000 100-42"

Tokenizer to Filter: "hot-spot”, "RoboBlaster/9000", "100-42"
Out: "hot", "spot", "RoboBlaster", "9000"

Example:

Concatenate word parts and number parts, but not word and number parts that occur in the same token.

<anal yzer >

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.WrdDelimterFilterFactory" catenateWrds="1"
cat enat eNunbers="1"/>
</ anal yzer >

In: "hot-spot 100+42 XL40"

Tokenizer to Filter: "hot-spot"(1), "100+42"(2), "XL40"(3)

Out: "hot"(1), "spot"(2), "hotspot"(2), "100"(3), "42"(4), "10042"(4), "XL"(5), "40"(6)
Example:

Concatenate all. Word and/or number parts are joined together.

<anal yzer >

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.WrdDelimterFilterFactory" catenateAl|l="1"/>
</ anal yzer >

In: "XL-4000/ES"

Tokenizer to Filter: "XL-4000/ES"(1)

Out: "XL"(1), "4000"(2), "ES"(3), "XL4000ES"(3)
Example:

Using a protected words list that contains "AstroBlaster" and "XL-5000" (among others).

<anal yzer>

<t okeni zer class="sol r. Wit espaceTokeni zer Factory"/ >

<filter class="solr.WrdDelimterFilterFactory" protected="protwords.txt"/>
</ anal yzer >

In: "FooBar AstroBlaster XL-5000 ==ES-34-"
Tokenizer to Filter: "FooBar", "AstroBlaster", "XL-5000", "==ES-34-"

Out: "FooBar", "FooBar", "AstroBlaster"”, "XL-5000", "ES", "34"

Related Topics

® TokenFilterFactories

CharFilterFactories

Char Filter is a component that pre-processes input characters. Char Filters can be chained like Token Filters and placed in front of a Tokenizer.
Char Filters can add, change, or remove characters while preserving the original character offsets to support features like highlighting.

solr.MappingCharFilterFactory

Apache Solr Reference Guide 4.6 96

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#TokenFilterFactories

This filter creates or g. apache. | ucene. anal ysi s. Mappi ngChar Fi | t er, which can be used for changing one character to another (for
example, for normalizing é to e.).

This filter requires specifying a mappi ng argument, which is the path and name of a file containing the mappings to perform.

Example:

<anal yzer >

<charFilter class="solr.Mppi ngCharFilterFactory"
mappi ng="mappi ng- Fol dToOASCI | . txt"/ >
</ anal yzer >

solr.HTMLStripCharFilterFactory

This filter creates or g. apache. sol r. anal ysi s. HTMLSt ri pChar Fi | t er . This Char Filter strips HTML from the input stream and passes the
result to another Char Filter or a Tokenizer.

This filter:

Removes HTML/XML tags while preserving other content.

Removes attributes within tags and supports optional attribute quoting.

Removes XML processing instructions, such as: <?foo bar?>

Removes XML comments.

Removes XML elements starting with <!>.

Removes contents of <script> and <style> elements.

Handles XML comments inside these elements (normal comment processing will not always work).
Replaces numeric character entities references like A or ;.

The terminating ';' is optional if the entity reference is followed by whitespace.

Replaces all named character entity references.

 is replaced with a space instead of 0xa0.

The terminating ;' is mandatory to avoid false matches on something like "Alpha&Omega Corp".
Newlines are substituted for block-level elements.

<CDATA> sections are recognized.

Inline tags, such as , <i >, or will be removed.

Uppercase character entities like quot , gt , I t and anp are recognized and handled as lowercase.

" The input need not be an HTML document. The filter removes only constructs that look like HTML. If the input doesn't include
anything that looks like HTML, the filter won't remove any input.

The table below presents examples of HTML stripping.

Input Output

my l i nk</ a> my link

hel | o<! - -comment - - > hello

hel l o<script><!-- f('<!--internal--></script>); --></script> hello

if a<b then print a; if a<b then print a;
hell o <td hei ght=22 nowap align="left"> hello

a<b A Al pha&Orega a<b A Alpha&Omega

solr.PatternReplaceCharFilterFactory

This filter uses regular expressions to replace or change character patterns.
Arguments:

pat t er n: the regular expression pattern to apply to the incoming text.

repl aceW t h: the text to use to replace matching patterns.

You can configure this filter in scherma. xm like this:

Apache Solr Reference Guide 4.6 97

http://www.regular-expressions.info/reference.html

<anal yzer >
<charFilter class="solr.PatternRepl aceCharFilterFactory"

pattern="([nNJ[oO\.)\s*(\d+)" replaceWth="$1$2"/>
</ anal yzer >

The table below presents examples of regex-based pattern replacement:

Input pattern replaceWith = Output Description

see-ing looking (\w+) (i ng) $1 see-ing look Removes "ing" from the end of word.

see-ing looking (\w+)ing $1 see-ing look Same as above. 2nd parentheses can be omitted.
N0.1 NO.no.543 [nN][oQ\.\s*(\d+) #3$1 #1 NO. #543 Replace some string literals

abc=1234=5678 (\w+)=(\d+)=(\d+) @ $3=$1=%$2 5678=abc=1234 Change the order of the groups.

Related Topics

® CharFilterFactories

Language Analysis

This section contains information about tokenizers and filters related to character set conversion or for use with specific languages. For the
European languages, tokenization is fairly straightforward. Tokens are delimited by white space and/or a relatively small set of punctuation
characters. In other languages the tokenization rules are often not so simple. Some European languages may require special tokenization rules

as well, such as rules for decompounding German words.

For information about language detection at index time, see Detecting Languages During Indexing.

Topics discussed in this section:

KeyWordMarkerFilterFactory
StemmerOverrideFilterFactory
Dictionary Compound Word Token Filter
Unicode Collation

ASCII Folding Filter

Language-Specific Factories

Related Topics

KeyWordMarkerFilterFactory

Protects words from being modified by stemmers. A customized protected word list may be specified with the "protected" attribute in the schema.
Any words in the protected word list will not be modified by any stemmer in Solr.

A sample Solr pr ot wor ds. t xt with comments can be found in the / sol r/ conf/ directory:

<fi el dtype nane="nyfiel dtype" class="solr. TextFi el d">
<anal yzer >
<t okeni zer cl ass="sol r. \WitespaceTokeni zer Factory"/>
<filter class="sol r.KeywordMarkerFilterFactory" protected="protwords.txt" />
<filter class="solr.PorterStenFilterFactory" />
</ anal yzer >
</fieldtype>

StemmerOverrideFilterFactory
Overrides stemming algorithms by applying a custom mapping, then protecting these terms from being modified by stemmers.

A customized mapping of words to stems, in a tab-separated file, can be specified to the "dictionary" attribute in the schema. Words in this
mapping will be stemmed to the stems from the file, and will not be further changed by any stemmer.

Apache Solr Reference Guide 4.6 98

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#CharFilterFactories

A sample stemdict.txt with comments can be found in the Source Repository.

<fieldtype nane="nyfiel dtype" class="solr. TextField">
<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.StemerOverrideFilterFactory" dictionary="stermdict.txt" />
<filter class="solr.PorterStenFilterFactory" />
</ anal yzer >
</fieldtype>

Dictionary Compound Word Token Filter

This filter splits, or decompounds, compound words into individual words using a dictionary of the component words. Each input token is passed
through unchanged. If it can also be decompounded into subwords, each subword is also added to the stream at the same logical position.

Compound words are most commonly found in Germanic languages.
Factory class: sol r. Di cti onar yConpoundWor dTokenFi | t er Fact ory
Arguments:

di cti onary: (required) The path of a file that contains a list of simple words, one per line. Blank lines and lines that begin with "#" are ignored.
This path may be an absolute path, or path relative to the Solr config directory.

m nWor dSi ze: (integer, default 5) Any token shorter than this is not decompounded.

m nSubwor dSi ze: (integer, default 2) Subwords shorter than this are not emitted as tokens.

maxSubwor dSi ze: (integer, default 15) Subwords longer than this are not emitted as tokens.

onl yLongest Mat ch: (true/false) If true (the default), only the longest matching subwords will generate new tokens.
Example:

Assume that ger manwor ds. t xt contains at least the following words: dunm kopf donau dampf schiff

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.DictionaryConpoundWrdTokenFilterFactory"
di cti onary="ger manwords. txt"/>
</ anal yzer >

In: "Donaudampfschiff dummkopf"
Tokenizer to Filter: "Donaudampfschiff'(1), "dummkopf"(2),

Out: "Donaudampfschiff'(1), "Donau"(1), "dampf"(1), "schiff'(1), "dummkopf"(2), "dumm"(2), "kopf"(2)

Unicode Collation

Unicode Collation is a language-sensitive method of sorting text that can also be used for advanced search purposes.

Unicode Collation in Solr is fast, because all the work is done at index time.

Rather than specifying an analyzer within <f i el dtype ... class="sol r. Text Fi el d">,the sol r. Col | ati onFi el d and

sol r. 1 CUCol | ati onFi el d field type classes provide this functionality. sol r. | CUCol | ati onFi el d, which is backed by the ICU4J] library,
provides more flexible configuration, has more locales, is significantly faster, and requires less memory and less index space, since its keys are
smaller than those produced by the JDK implementation that backs sol r. Col | ati onFi el d.

sol r. | CUCol | ati onFi el d is included in the Solr anal ysi s- extras contrib - see sol r/ contri b/ anal ysi s- ext r as/ README. t xt for
instructions on which jars you need to add to your SOLR_HOVE/ | i b in order to use it.

Apache Solr Reference Guide 4.6 99

http://svn.apache.org/repos/asf/lucene/dev/branches/branch_4x/solr/core/src/test-files/solr/collection1/conf/stemdict.txt
http://site.icu-project.org

v, CollationKeyFilterFactoryand| CUCol | ationKeyFilterFactory are deprecated token filter implementations of the
same functionality as sol r. Col | ati onFi el d and sol r. | CUCol | ati onFi el d, respectively. These classes will no longer
be available in Solr 5.0.

solr. |1 CUCol | ati onFi el dandsolr. Col | ati onFi el d fields can be created in two ways:

® Based upon a system collator associated with a Locale.
® Based upon a tailored Rul eBasedCol | at or ruleset.

Arguments for sol r. | CUCol | ati onFi el d, specified as attributes within the <f i el dt ype> element:

Using a System collator:

| ocal e: (required) RFC 3066 locale ID. See the ICU locale explorer for a list of supported locales.

st rengt h: Valid values are pri nary, secondary, terti ary, quat ernary, ori denti cal . See Comparison Levels in ICU Collation
Concepts for more information.

deconposi ti on: Valid values are no or canoni cal . See Normalization in ICU Collation Concepts for more information.

Using a Tailored ruleset:

cust om (required) Path to a UTF-8 text file containing rules supported by Rul eBasedCol | at or

st rengt h: Valid values are pri mary, secondary, tertiary, quaternary, ori denti cal . See Comparison Levels in ICU Collation
Concepts for more information.

deconposi ti on: Valid values are no or canoni cal . See Normalization in ICU Collation Concepts for more information.
Expert options:
al t er nat e: Valid values are shi f t ed or non- i gnor abl e. Can be used to ignore punctuation/whitespace.

caselevel : (trueffalse) If true, in combination with st r engt h="pri mary", accents are ignored but case is taken into account. The default is
false. See CaselLevel in ICU Collation Concepts for more information.

caseFi r st : Valid values are | ower or upper . Useful to control which is sorted first when case is not ignored.
numer i c: (true/false) If true, digits are sorted according to numeric value, e.g. foobar-9 sorts before foobar-10. The default is false.

vari abl eTop: Single character or contraction. Controls what is variable for al t er nat e

Sorting Text for a Specific Language

In this example, text is sorted according to the default German rules provided by ICU4J.

Locales are typically defined as a combination of language and country, but you can specify just the language if you want. For example, if you
specify "de" as the language, you will get sorting that works well for the German language. If you specify "de" as the language and "CH" as the
country, you will get German sorting specifically tailored for Switzerland.

<!-- Define a field type for German collation -->
<fiel dType nane="col | at edGERMAN"' cl ass="sol r. | CUCol | ati onFi el d"
| ocal e="de"

strengt h="primary" />

<I-- Define a field to store the German coll ated nmanufacturer nanes. -->
<field nanme="nmanuGERMAN' type="col | at edGERMAN"' i ndexed="true" stored="fal se"/>

<l-- Copy the text to this field. W could create French, English, Spanish versions
t oo,

and sort differently for different users! -->
<copyFi el d source="manu" dest ="nanuGERMAN"/ >

In the example above, we defined the strength as "primary". The strength of the collation determines how strict the sort order will be, but it also
depends upon the language. For example, in English, "primary" strength ignores differences in case and accents.

Apache Solr Reference Guide 4.6 100

http://www.rfc-editor.org/rfc/rfc3066.txt
http://demo.icu-project.org/icu-bin/locexp
http://userguide.icu-project.org/collation/concepts#TOC-Comparison-Levels
http://userguide.icu-project.org/collation/concepts#TOC-Comparison-Levels
http://userguide.icu-project.org/collation/concepts#TOC-Normalization
http://userguide.icu-project.org/collation/concepts#TOC-Comparison-Levels
http://userguide.icu-project.org/collation/concepts#TOC-Comparison-Levels
http://userguide.icu-project.org/collation/concepts#TOC-Normalization
http://userguide.icu-project.org/collation/concepts#TOC-CaseLevel

Another example:

<fi el dType nane="pol i shCasel nsensitive" class="solr.|CUCol | ationFi el d"
| ocal e="pl _PL"
strengt h="secondary" />

<field nanme="city" type="text_general" indexed="true" stored="true"/>

<field name="city_sort" type="polishCasel nsensitive" indexed="true" stored="false"/>

<copyFi el d source="city" dest="city_sort"/>

The type will be used for the fields where the data contains Polish text. The "secondary" strength will ignore case differences, but, unlike "primary"
strength, a letter with diacritic(s) will be sorted differently from the same base letter without diacritics.

An example using the "city_sort" field to sort:

g=*:*&f | =city&sort=city_sort +asc

Sorting Text for Multiple Languages

There are two approaches to supporting multiple languages: if there is a small list of languages you wish to support, consider defining collated
fields for each language and using copyFi el d. However, adding a large number of sort fields can increase disk and indexing costs. An
alternative approach is to use the Unicode def aul t collator.

The Unicode def aul t or ROOT locale has rules that are designed to work well for most languages. To use the def aul t locale, simply define the
locale as the empty string. This Unicode default sort is still significantly more advanced than the standard Solr sort.

<fiel dType nane="col | at edROOT" cl ass="solr.| CUCol | ati onFi el d"
| ocal e=""
strengt h="primary" />

Sorting Text with Custom Rules

You can define your own set of sorting rules. It's easiest to take existing rules that are close to what you want and customize them.

In the example below, we create a custom rule set for German called DIN 5007-2. This rule set treats umlauts in German differently: it treats 6 as
equivalent to oe, & as equivalent to ae, and U as equivalent to ue. For more information, see the ICU RuleBasedCollator javadocs.

This example shows how to create a custom rule set for sol r. | CUCol | at i onFi el d and dump it to a file:

Apache Solr Reference Guide 4.6 101

http://icu-project.org/apiref/icu4j/com/ibm/icu/text/RuleBasedCollator.html

/'l get the default rules for Germany

/'l these are called DIN 5007-1 sorting

Rul eBasedCol | at or baseCol | ator = (Rul eBasedCol | ator) Col |l ator. getlnstance(new
ULocal e("de", "DE"));

/1 define some tailorings, to make it DIN 5007-2 sorting.
/1 For exanple, this makes 6 equivalent to oe
String DI N50O07_2_tailorings =

"& ae , a\u0308 & AE , A\ u0308"+

"& oe , o\u0308 & CE, O u0308"+

"& ue , u\u0308 & UE , u\u0308";

/1 concatenate the default rules to the tailorings, and dunp it to a String

Rul eBasedCol | ator tail oredColl ator = new Rul eBasedCol | at or (baseCol | ator. getRul es() +
DI N5007_2 tail orings);

String tailoredRul es = tail oredCol | ator. get Rul es();

/Il wite these to a file, be sure to use UTF-8 encodi ng!!!
Fi | eQut put Stream os = new Fi | eQut put St ream new
File("/solr_hone/conf/custonRul es. dat"));
IO%tils.wite(tailoredRules, os, "UTF-8");

This rule set can now be used for custom collation in Solr:

<fiel dType nane="col | at edCUSTOM' cl ass="sol r. | CUCol | ati onFi el d"
cust on¥"cust onRul es. dat "
strengt h="primary" />

JDK Collation

As mentioned above, ICU Unicode Collation is better in several ways than JDK Collation, but if you cannot use ICU4J for some reason, you can
use sol r. Col | ati onFi el d.

The principles of JDK Collation are the same as those of ICU Collation; you just specify | anguage, count ry and var i ant arguments instead of
the combined | ocal e argument.

Arguments for sol r. Col | ati onFi el d, specified as attributes within the <f i el dt ype> element:

Using a System collator (see Oracle's list of locales supported in Java 6):

| anguage: (required) ISO-639 language code

count ry: ISO-3166 country code

var i ant : Vendor or browser-specific code

st rengt h: Valid values are pri mary, secondary, tertiary ori denti cal . See Oracle Java 6 Collator javadocs for more information.
deconposi ti on: Valid values are no, canoni cal , or ful | . See Oracle Java 6 Collator javadocs for more information.

Using a Tailored ruleset:

cust om (required) Path to a UTF-8 text file containing rules supported by the JDK
Rul eBasedCol | ator | http: // docs. oracl e. conf j avase/ 6/ docs/ api / j aval/ t ext / Rul eBasedCol | at or. ht m

st rengt h: Valid values are pri mary, secondary, tertiary ori denti cal . See Oracle Java 6 Collator javadocs for more information.
deconposi ti on: Valid values are no, canoni cal , or f ul | . See Oracle Java 6 Collator javadocs for more information.

A solr. Col | ati onFi el d example:

Apache Solr Reference Guide 4.6 102

http://www.oracle.com/technetwork/java/javase/locales-137662.html
http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm
http://docs.oracle.com/javase/6/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/6/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/6/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/6/docs/api/java/text/Collator.html

<fiel dType nane="col | at edGERMAN"' cl ass="sol r. Col | ati onFi el d"
| anguage="de"
country="DE"
strength="primary" /> <!-- ignore Umauts and | etter case when sorting -->

<field nane="nmanuGERMAN' type="col | at edGERVMAN' i ndexed="true" stored="false" />

<copyFi el d source="manu" dest="nanuGERMAN"/ >

ASCII Folding Filter

This filter converts alphabetic, numeric, and symbolic Unicode characters which are not in the first 127 ASCII characters (the "Basic Latin"
Unicode block) into their ASCII equivalents, if one exists. Only those characters with reasonable ASCII alternatives are converted:

This can increase recall by causing more matches. On the other hand, it can reduce precision because language-specific character differences
may be lost.

Factory class: sol r. ASCl | Fol di ngFi | t er Factory
Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.ASCl|Fol dingFilterFactory"/>
</ anal yzer >

In: "Bjérn Angstrom"
Tokenizer to Filter: "Bjérn", "Angstrom"

Out: "Bjorn", "Angstrom"

Language-Specific Factories
These factories are each designed to work with specific languages. The languages covered here are:

Arabic

Brazilian Portuguese
Bulgarian

Catalan

Chinese

Simplified Chinese
CJK

Czech

Danish

Dutch

Finnish

French

Galician

German

Greek

Hebrew, Lao, Myanmar, Khmer

Hindi

Indonesian

Italian

Irish

Kuromoji (Japanese)
Latvian

Norwegian

Persian

® Polish

Apache Solr Reference Guide 4.6 103

Portuguese
Romanian
Russian
Spanish
Swedish
Thai
Turkish

Arabic

Solr provides support for the Light-10 (PDF) stemming algorithm, and Lucene includes an example stopword list.

This algorithm defines both character normalization and stemming, so these are split into two filters to provide more flexibility.
Factory classes: sol r. Arabi cStenfFi | ter Factory, sol r. Arabi cNornmal i zati onFi | t er Fact ory

Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.Arabi cNormalizationFilterFactory"/>
<filter class="solr.ArabicStenFilterFactory"/>

</ anal yzer >

Brazilian Portuguese

This is a Java filter written specifically for stemming the Brazilian dialect of the Portuguese language. It uses the Lucene class

org. apache. | ucene. anal ysi s. br. Brazi | i anSt ermer . Although that stemmer can be configured to use a list of protected words (which
should not be stemmed), this factory does not accept any arguments to specify such a list.

Factory class: sol r. Brazi | i anSt enFi | t er Fact ory

Arguments: None

Example:

<anal yzer type="i ndex">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.BrazilianStenFilterFactory"/>
</ anal yzer >

In: "praia praias"

Tokenizer to Filter: "praia", "praias

Out: "pra”, "pra"

Bulgarian

Solr includes a light stemmer for Bulgarian, following this algorithm (PDF), and Lucene includes an example stopword list.
Factory class: sol r. Bul gari anStenfFi | ter Factory

Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.Bul garianStenFilterFactory"/>
</ anal yzer >

Apache Solr Reference Guide 4.6 104

http://www.mtholyoke.edu/~lballest/Pubs/arab_stem05.pdf
http://members.unine.ch/jacques.savoy/Papers/BUIR.pdf

Catalan

Solr can stem Catalan using the Snowball Porter Stemmer with an argument of | anguage=" Cat al an". Solr includes a set of contractions for
Catalan, which can be stripped using sol r. El i si onFi | ter Factory.

Factory class: sol r. Snowbal | PorterFi |l t er Fact ory
Arguments:
| anguage: (required) stemmer language, "Catalan" in this case

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ElisionFilterFactory"
articles="lang/contractions_ca.txt"/>
<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Catal an" />
</ anal yzer>

In: "llengtes llengua”
Tokenizer to Filter: "llengties”(1) "llengua“(2),
Out: "llengu”(1), "llengu™(2)

Chinese

Chinese Tokenizer

The Chinese Tokenizer is deprecated as of Solr 3.4. Use the sol r. St andar dTokeni zer Fact ory instead.
Factory class: sol r. Chi neseTokeni zer Factory

Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. Chi neseTokeni zer Factory"/>
</ anal yzer >

Chinese Filter Factory

The Chinese Filter Factory is deprecated as of Solr 3.4. Use the sol r. St opFi | t er Fact ory instead.
Factory class: sol r. Chi neseFi | t er Fact ory

Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.ChineseFilterFactory"/>

</ anal yzer >

Simplified Chinese

For Simplified Chinese, Solr provides support for Chinese sentence and word segmentation with the
sol r. Smar t Chi neseSent enceTokenFi | t er Fact ory and sol r. Smar t Chi neseWor dTokenFi | t er Fact ory in the anal ysi s- extras

Apache Solr Reference Guide 4.6 105

contrib module. This component includes a large dictionary and segments Chinese text into words with the Hidden Markov Model. To use this
filter, see sol r/ contri b/ anal ysi s- ext ras/ READVE. t xt for instructions on which jars you need to add to your sol r _hone/ |i b.

Factory class: sol r. Smart Chi neseWor dTokenFi | t er Fact ory

Arguments: None

Examples:

To use the default setup with fallback to English Porter stemmer for English words, use:

<anal yzer class="org. apache. | ucene. anal ysi s.cn.smart. Smart Chi neseAnal yzer"/>

Or to configure your own analysis setup, use the Smar t Chi neseSent enceTokeni zer Fact or y along with your custom filter setup. The
sentence tokenizer tokenizes on sentence boundaries and the Snmar t Chi neseWr dTokenFi | t er breaks this further up into words.

<anal yzer>
<t okeni zer cl ass="sol r. Smart Chi neseSent enceTokeni zer Fact ory"/ >
<filter class="solr.Smart Chi neseWordTokenFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.PositionFilterFactory" />

</ anal yzer >

CJK

This tokenizer breaks Chinese, Japanese and Korean language text into tokens. These are not whitespace delimited languages. The tokens
generated by this tokenizer are "doubles", overlapping pairs of CJK characters found in the field text.

Factory class: sol r. CJKTokeni zer Fact ory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. CJKTokeni zer Factory"/>
</ anal yzer >

Czech

Solr includes a light stemmer for Czech, following this algorithm, and Lucene includes an example stopword list.
Factory class: sol r. CzechSt enFi | t er Fact ory

Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.CzechStenFilterFactory"/>
<anal yzer >

In: "prezidensti, prezidenta, prezidentského"
Tokenizer to Filter: "prezidensti”, "prezidenta", "prezidentského"

Out: "preziden", "preziden", "preziden"

Danish

Solr can stem Danish using the Snowball Porter Stemmer with an argument of | anguage="Dani sh" .

Apache Solr Reference Guide 4.6 106

https://dl.acm.org/citation.cfm?id=1598600

Factory class: sol r. Snowbal | PorterFil ter Factory
Arguments:
| anguage: (required) stemmer language, "Danish" in this case

Example:

<anal yzer >

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Danish" />
</ anal yzer >

In: "undersgg undersggelse”
Tokenizer to Filter: "undersgg"(1) "undersggelse”(2),

Out: "undersgg"(1), "undersgg"(2)

Dutch

This is a Java filter written specifically for stemming the Dutch language. It uses the Lucene class

org. apache. | ucene. anal ysi s. nl . Dut chSt enmrer . Although that stemmer can be configured to use a list of protected words (which should
not be stemmed), this factory does not accept any arguments to specify such a list.

Another option for stemming Dutch words is to use the Snowball Porter Stemmer with an argument of | anguage="Dut ch".

Factory class: sol r. Dut chSt enFi | t er Fact ory

Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.DutchStenFilterFactory"/>

</ anal yzer >

In: "kanaal kanalen"
Tokenizer to Filter: "kanaal”, "kanalen”

Out: "kanal", "kanal"

Finnish

Solr includes support for stemming Finnish, and Lucene includes an example stopword list.
Factory class: sol r. Fi nni shLi ght St enFi | t er Factory

Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.FinnishLightStenFilterFactory"/>
</ anal yzer >

In: "kala kalat"
Tokenizer to Filter: "kala", "kalat"

Out: "kala", "kala"

Apache Solr Reference Guide 4.6 107

French

Elision Filter
Removes article elisions from a token stream. This filter can be useful for languages such as French, Catalan, Italian, and Irish.
Factory class: sol r. El i si onFi | ter Factory

Arguments:

arti cl es: The pathname of a file that contains a list of articles, one per line, to be stripped. Articles are words such as "le", which are commonly
abbreviated, such as in I'avion (the plane). This file should include the abbreviated form, which precedes the apostrophe. In this case, simply "I". If
no arti cl es attribute is specified, a default set of French articles is used.

i gnor eCase: (boolean) If true, the filter ignores the case of words when comparing them to the common word file. Defaults to f al se

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.ElisionFilterFactory"
i gnor eCase="true"
articles="lang/contractions_fr.txt"/>
</ anal yzer >

In: "L'histoire d'art"
Tokenizer to Filter: "L'histoire", "d'art"

Out: "histoire", "art"

French Light Stem Filter

Solr includes three stemmers for French: one in the sol r. Snowbal | Porter Fi | t er Fact ory, a lighter stemmer called

sol r. FrenchLi ght St enfi | t er Fact ory, and an even less aggressive stemmer called sol r. FrenchM ni nmal St enfi | t er Fact ory.
Lucene includes an example stopword list.

Factory classes: sol r. FrenchLi ght St enFi | t er Fact ory, sol r. FrenchM ni nal StenFi | t er Factory

Arguments: None

Examples:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ElisionFilterFactory"
articles="lang/contractions_fr.txt"/>
<filter class="solr.FrenchLightStentilterFactory"/>
</ anal yzer >

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ElisionFilterFactory"
articles="lang/contractions_fr.txt"/>
<filter class="solr.FrenchM ni mal StenFilterFactory"/>
</ anal yzer >

In: "le chat, les chats"

Tokenizer to Filter: "le", "chat", "les", "chats"

Apache Solr Reference Guide 4.6 108

Out: "le", "chat", "le", "chat"

Galician

Solr includes a stemmer for Galician following this algorithm, and Lucene includes an example stopword list.
Factory class: sol r. Gal i ci anStenfFi | ter Factory

Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.GalicianStenFilterFactory"/>
</ anal yzer >

In: "felizmente Luzes"

Tokenizer to Filter: "felizmente", "luzes"

Out: "feliz", "luz"

German

Solr includes four stemmers for German: one in the sol r. Snowbal | Porter Fi | t er Fact ory | anguage="Ger man", a stemmer called
sol r. GermanSt enfi | t er Fact ory, a lighter stemmer called sol r. Ger manLi ght St enfi | t er Fact ory, and an even less aggressive

stemmer called sol r. Ger manM ni nal St enFi | t er Fact ory. Lucene includes an example stopword list.

Factory classes: sol r. GermanSt enfi | t er Fact ory, sol r. Li ght GermanSt enFi | t er Factory,
sol r. M ni mal Ger nanSt enFi | t er Fact ory

Arguments: None

Examples:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.GernmanStenFilterFactory"/>

</ anal yzer >

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="sol r.GernmanLi ght Stenf¥ilterFactory"/>
</ anal yzer >

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.GermanM ni nal StenFil terFactory"/>
</ anal yzer >

In: "hund hunden"
Tokenizer to Filter: "hund", "hunden"

Out: "hund", "hund"

Greek

This filter converts uppercase letters in the Greek character set to the equivalent lowercase character.

Apache Solr Reference Guide 4.6

109

http://bvg.udc.es/recursos_lingua/stemming.jsp

Factory class: sol r. G eekLower CaseFi | t er Fact ory

Arguments: None

. Use of custom charsets is not longer supported as of Solr 3.1. If you need to index text in these encodings, please use Java's
character set conversion facilities (InputStreamReader, and so on.) during I/O, so that Lucene can analyze this text as Unicode

instead.

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.G eekLower CaseFilterFactory"/>

</ anal yzer >

Hindi

Solr includes support for stemming Hindi following this algorithm (PDF), support for common spelling differences through the

sol r. Hi ndi Normal i zat i onFi | t er Fact ory, support for encoding differences through the sol r. | ndi cNor mal i zati onFi | t er Factory
following this algorithm, and Lucene includes an example stopword list.

Factory classes: sol r. I ndi cNor mal i zati onFi | ter Factory, sol r. Hi ndi Normal i zati onFi | ter Factory,
sol r. Hi ndi StenFil terFactory

Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.IndicNormalizationFilterFactory"/>
<filter class="solr.H ndi NornalizationFilterFactory"/>
<filter class="solr.H ndi StenFilterFactory"/>

</ anal yzer >

Indonesian

Solr includes support for stemming Indonesian (Bahasa Indonesia) following this algorithm (PDF), and Lucene includes an example stopword list.
Factory class: sol r. | ndonesi anSt enFi | t er Fact ory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.I|IndonesianStenFilterFactory" stenDerivational ="true" />

</ anal yzer >

In: "sebagai sebagainya"
Tokenizer to Filter: "sebagai”, "sebagainya"

Out: "bagai”, "bagai”

Italian

Solr includes two stemmers for Italian: one in the sol r. Snowbal | PorterFil ter Factory | anguage="Italian", and a lighter stemmer
called sol r. 1talianLi ght StenfilterFactory. Lucene includes an example stopword list.

Apache Solr Reference Guide 4.6 110

http://computing.open.ac.uk/Sites/EACLSouthAsia/Papers/p6-Ramanathan.pdf
http://ldc.upenn.edu/myl/IndianScriptsUnicode.html
http://www.illc.uva.nl/Publications/ResearchReports/MoL-2003-02.text.pdf

Factory class: solr. 1talianStenFilterFactory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ElisionFilterFactory"
articles="lang/contractions_it.txt"/>
<filter class="solr.ItalianLightStenFilterFactory"/>
</ anal yzer >

In: "propaga propagare propagamento”

non

Tokenizer to Filter: "propaga", "propagare”, "propagamento”

Out: "propag", "propag", "propag"

Irish

Solr can stem Irish using the Snowball Porter Stemmer with an argument of | anguage="1ri sh". Solr includes

solr. I rishLower CaseFi | t er, which can handle Irish-specific constructs. Solr also includes a set of contractions for Irish which can be
stripped using sol r. El i si onFi | ter Factory.

Factory class: sol r. Snowbal | PorterFil terFactory

Arguments:

| anguage: (required) stemmer language, "Irish" in this case

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.ElisionFilterFactory"
articles="lang/contractions_ga.txt"/>
<filter class="solr.IrishLowerCaseFilterFactory"/>
<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Irish" />
</ anal yzer >

In: "siopadodireacht siceapatacha b'fhearr m'athair”

Tokenizer to Filter: "siopaddireacht", "siceapatacha", "b'fhearr", "m'athair"

Out: "siopadoir”, "siceapaite”, "fearr", "athair"

Kuromoji (Japanese)

Solr includes support for stemming Kuromoji (Japanese), and Lucene includes an example stopword list. Kuromoji has a search mode (default)
that does segmentation useful for search. A heuristic is used to segment compounds into its parts and the compound itself is kept as a synonym.

With Solr 4, the Japanesel t er ati onMar kChar Fi | t er Fact or y now is included to normalize Japanese iteration marks.

You can also make discarding punctuation configurable in the JapaneseTokeni zer Fact ory, by setting di scar dPunct uati ontof al se (to
show punctuation) or t r ue (to discard punctuation).

Factory class: sol r. Kuronoj i StenfFil ter Factory

Arguments:

node: Use search-mode to get a noun-decompounding effect useful for search. Search mode improves segmentation for search at the expense
of part-of-speech accuracy. Valid values for mode are:

® nor nal : default segmentation

Apache Solr Reference Guide 4.6 111

® sear ch: segmentation useful for search (extra compound splitting)
® ext ended: search mode with unigramming of unknown words (experimental)

For some applications it might be good to use search mode for indexing and normal mode for queries to reduce recall and prevent parts of
compounds from being matched and highlighted.

Kuromoji also has a convenient user dictionary feature that allows overriding the statistical model with your own entries for segmentation,
part-of-speech tags and readings without a need to specify weights. Note that user dictionaries have not been subject to extensive testing. User
dictionary attributes are:

user Di cti onary: user dictionary filename
user Di cti onar yEncodi ng: user dictionary encoding (default is UTF-8)

See | ang/ userdi ct_j a. t xt for a sample user dictionary file.
Punctuation characters are discarded by default. Use di scar dPunct uati on="f al se" to keep them.

Example:

<fiel dType nane="text_ja" positionlncrementGap="100"
aut oGener at ePhraseQueri es="fal se">
<anal yzer >
<t okeni zer class="solr.JapaneseTokeni zer Factory" node="search"
user Di ctionary="1ang/userdict_ja.txt"/>
<filter class="sol r.JapaneseBaseForntFilterFactory"/>
<filter class="solr.JapanesePart O SpeechSt opFi |l t er Fact ory"
tags="1ang/ stoptags_ja.txt" enabl ePositionl ncrenents="true"/>
<filter class="solr.CIKWdthFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="| ang/ stopwords_j a. t xt" enabl ePosi ti onl ncrenents="true" />
<filter class="sol r.JapaneseKat akanaStenfilterFactory" m ni nunLengt h="4"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer>
</fieldType>

Hebrew, Lao, Myanmar, Khmer
Lucene provides support, in addition to UAX#29 word break rules, for Hebrew's use of the double and single quote characters, and for

segmenting Lao, Myanmar, and Khmer into syllables with the sol r. | CUTokeni zer Fact ory in the anal ysi s- ext r as contrib module. To use
this tokenizer, see sol r/ contri b/ anal ysi s- ext ras/ README. t xt f or instructions on which jars you need to add to your sol r _hone/li b

See the ICUTokenizer for more information.

Latvian

Solr includes support for stemming Latvian, and Lucene includes an example stopword list.
Factory class: sol r. Lat vi anSt enFi | t er Factory

Arguments: None

Example:

<fiel dType nane="text | vsten' class="solr.TextField" positionlncrenentGp="100">
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.LatvianStenFilterFactory"/>
</ anal yzer >
</fieldType>

In: “tirgiem tirgus"

Apache Solr Reference Guide 4.6 112

Tokenizer to Filter: "tirgiem", "tirgus"

Out: "tirg", "tirg"
Norwegian

Solr includes two classes for stemming Norwegian, Nor wegi anLi ght St enti | t er Fact ory and Nor wegi anM ni mal St enfi | t er Fact ory.
Lucene includes an example stopword list.

Another option is to use the Snowball Porter Stemmer with an argument of language="Norwegian".

Norwegian Light Stemmer

The Nor wegi anLi ght St enFi | t er Fact ory requires a “two-pass" sort for the -dom and -het endings. This means that in the first pass the word
"kristendom" is stemmed to "kristen", and then all the general rules apply so it will be further stemmed to "krist". The effect of this is that "kristen,"
"kristendom," "kristendommen," and "kristendommens" will all be stemmed to "krist."

The second pass is to pick up -dom and -het endings. Consider this example:

One pass Two passes

Before After Before After
forlegen forleg forlegen forleg
forlegenhet forlegen ' forlegenhet forleg

forlegenheten | forlegen forlegenheten forleg
forlegenhetens = forlegen forlegenhetens = forleg
firkantet firkant firkantet firkant
firkantethet firkantet = firkantethet firkant

firkantetheten firkantet firkantetheten firkant

Factory class: sol r. Nor wegi anLi ght St enFi | ter Factory
Arguments: None

Example:

<fiel dType nane="text _no" class="sol r. TextFi el d' positionlncrenmentGap="100">
<anal yzer >
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="1 ang/ st opwor ds_no. txt" format="snowbal | " enabl ePosi ti onl ncrenents="true"/>
<filter class="sol r. Norwegi anLi ght Stenfi |l terFactory"/>
</ anal yzer>
</fieldType>

In: "Forelskelsen"
Tokenizer to Filter: "forelskelsen”

Out: "forelske"

Norwegian Minimal Stemmer

The Nor wegi anM ni mal St enti | t er Fact or y stems plural forms of Norwegian nouns only.
Factory class: sol r. Nor wegi anM ni mal St enFi | t er Fact ory
Arguments: None

Example:

Apache Solr Reference Guide 4.6 113

<fiel dType nane="text _no" class="sol r. TextFi el d' positionlncrenment Gap="100">
<anal yzer>
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="1 ang/ st opwords_no. txt" format="snowbal | " enabl ePosi ti onl ncrements="true"/>
<filter class="solr.Norwegi anM ni nmal Stenfi |l ter Factory"/>
</ anal yzer>
</fieldType>

In: "Bilens"
Tokenizer to Filter: "bilens"

Out: "bil"

Persian

Persian Filter Factories

Solr includes support for normalizing Persian, and Lucene includes an example stopword list.
Factory class: sol r. Persi anNor nal i zati onFi |l ter Factory

Arguments: None

Example:

<anal yzer>
<t okeni zer class="solr. StandardTokeni zer Factory"/ >
<filter class="solr.ArabicNornalizationFilterFactory"/>
<filter class="solr.PersianNornalizationFilterFactory">
</ anal yzer >

Polish

Solr provides support for Polish stemming with the sol r. St enpel Pol i shSt enFi | t er Fact ory, and sol r. Mor phol ogi kFi | t er Factory
for lemmatization, in the contri b/ anal ysi s- ext r as module. The sol r. St enpel Pol i shSt enfi | t er Fact or y component includes an
algorithmic stemmer with tables for Polish. To use either of these filters, see sol r/ contri b/ anal ysi s- ext r as/ README. t xt for instructions
on which jars you need to add to your sol r _hone/ | i b.

Factory class: sol r. St enpel Pol i shSt enFi | t er Fact ory and sol r. Mor phol ogi kFi | t er Factory

Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr. Stenpel PolishStenFilterFactory"/>
</ anal yzer >

<anal yzer>
<t okeni zer cl ass="solr. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.Mrfologi kFilterFactory"/>

</ anal yzer >

Apache Solr Reference Guide 4.6 114

In: ""studenta studenci”
Tokenizer to Filter: "studenta”, "studenci"
Out: "student", "student"

More information about the Stempel stemmer is available in the Lucene javadocs, https://lucene.apache.org/core/4_0_0O/analyzers-stempel/index.
html.

Portuguese

Solr includes four stemmers for Portuguese: one in the sol r. Snowbal | Port er Fi | t er Fact or y, an alternative stemmer called

sol r. PortugueseSt enfi | t er Fact ory, a lighter stemmer called sol r. Port ugueseLi ght St enfi | t er Fact ory, and an even less
aggressive stemmer called sol r. Por t ugueseM ni mal St enFi | t er Fact or y. Lucene includes an example stopword list.

Factory classes: sol r. Port ugueseSt enfi | t er Fact ory, sol r. Port ugueseli ght StenFi |l ter Factory,
sol r. PortugueseM ni mal Stenfi |l ter Factory

Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr. PortugueseStenFilterFactory"/>
</ anal yzer >

<anal yzer>
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.PortugueselLightStenFilterFactory"/>
</ anal yzer >

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr. PortugueseM ni nal StenFilterFactory"/>
</ anal yzer >

In: "praia praias"

Tokenizer to Filter: "praia", "praias"

Out: "pra", "pra"

Romanian
Solr can stem Romanian using the Snowball Porter Stemmer with an argument of | anguage="Ronani an" .
Factory class: sol r. Snowbal | PorterFil terFactory

Arguments:

| anguage: (required) stemmer language, "Romanian” in this case

Example:

Apache Solr Reference Guide 4.6 115

https://lucene.apache.org/core/4_0_0/analyzers-stempel/index.html
https://lucene.apache.org/core/4_0_0/analyzers-stempel/index.html

<anal yzer >
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Romani an" />

</ anal yzer >

Russian

Russian Stem Filter

Solr includes two stemmers for Russian: one in the sol r. Snowbal | PorterFil ter Factory | anguage="Russi an", and a lighter stemmer
called sol r. Russi anLi ght St enfi | t er Fact or y. Lucene includes an example stopword list.

Factory class: sol r. Russi anLi ght St enFi | t er Factory

Arguments: None

1, Use of custom charsets is no longer supported as of Solr 3.4. If you need to index text in these encodings, please use Java's
character set conversion facilities (InputStreamReader, and so on.) during I/O, so that Lucene can analyze this text as Unicode
instead.

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.RussianLightStenFilterFactory"/>
</ anal yzer >

Spanish

Solr includes two stemmers for Spanish: one in the sol r. Snowbal | PorterFilterFactory | anguage="Spani sh", and a lighter stemmer
called sol r. Spani shLi ght St eni | t er Fact or y. Lucene includes an example stopword list.

Factory class: sol r. Spani shSt enFi | t er Factory
Arguments: None

Example:

<anal yzer>
<t okeni zer class="solr. StandardTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="sol r.Spani shLi ght Stenfi | terFactory"/>
</ anal yzer >

In: "torear toreara torearlo"
Tokenizer to Filter: "torear", "toreara", "torearlo"

Out: "tor", "tor", "tor
Swedish

Swedish Stem Filter

Solr includes two stemmers for Swedish: one in the sol r. Snowbal | Porter Fi | t er Fact ory | anguage="Swedi sh", and a lighter stemmer
called sol r. Swedi shLi ght St enfi | t er Fact or y. Lucene includes an example stopword list.

Apache Solr Reference Guide 4.6 116

Factory class: sol r. Swedi shSt enFi | t er Factory
Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="sol r.SwedishLi ght StenFilterFactory"/>
</ anal yzer >

In: "kloke klokhet klokheten"
Tokenizer to Filter: "kloke", "klokhet", "klokheten"

Out: "klok", "klok", "klok"

Thai

This filter converts sequences of Thai characters into individual Thai words. Unlike European languages, Thai does not use whitespace to delimit
words.

Factory class: sol r. Thai Wor dFi | t er Fact ory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.Thai WrdFilterFactory"/>

</ anal yzer >

Turkish

Solr includes support for stemming Turkish through the sol r. Snowbal | Port er Fi | t er Fact ory, as well as support for case-insensitive search
through the sol r. Tur ki shLower CaseFi | t er Fact ory, and Lucene includes an example stopword list.

Factory class: sol r. Tur ki shLower CaseFi | t er Factory
Arguments: None

Example:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr. Turki shLower CaseFilterFactory"/>

<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Turkish" />
</ anal yzer >

Related Topics

® LanguageAnalysis

Phonetic Matching

Introduced with Solr v3.6, Beider-Morse Phonetic Matching (BMPM) is a "soundalike" tool that lets you search using a new phonetic matching
system. BMPM helps you search for personal names (or just surnames) in a Solr/Lucene index, and is far superior to the existing phonetic
codecs, such as regular soundex, metaphone, caverphone, etc.

In general, phonetic matching lets you search a name list for names that are phonetically equivalent to the desired name. BMPM is similar to a

Apache Solr Reference Guide 4.6 117

http://wiki.apache.org/solr/LanguageAnalysis

soundex search in that an exact spelling is not required. Unlike soundex, it does not generate a large quantity of false hits.

From the spelling of the name, BMPM attempts to determine the language. It then applies phonetic rules for that particular language to
transliterate the name into a phonetic alphabet. If it is not possible to determine the language with a fair degree of certainty, it uses generic
phonetic instead. Finally, it applies language-independent rules regarding such things as voiced and unvoiced consonants and vowels to further
insure the reliability of the matches.

For example, assume that the matches found when searching for Stephen in a database are "Stefan”, "Steph", "Stephen"”, "Steve", "Steven",
"Stove", and "Stuffin". "Stefan", "Stephen", and "Steven" are probably relevant, and are names that you want to see. "Stuffin", however, is
probably not relevant. Also rejected were "Steph", "Steve", and "Stove". Of those, "Stove" is probably not one that we would have wanted. But
"Steph" and "Steve" are possibly ones that you might be interested in.

For Solr, BMPM searching is available for the following languages:

English

French

German

Greek

Hebrew written in Hebrew letters
Hungarian

Italian

Lithuanian and Latvian

Polish

Romanian

Russian written in Cyrillic letters

Russian transliterated into English letters
Spanish

Turkish

The name matching is also applicable to non-Jewish surnames from the countries in which those languages are spoken.

For more information, see here: http://stevemorse.org/phoneticinfo.htm and http://stevemorse.org/phonetics/bmpm.htm..

Running Your Analyzer

Once you've defined a field type in schema. xm and specified the analysis steps that you want applied to it, you should test it out to make sure
that it behaves the way you expect it to. Luckily, there is a very handy page in the Solr admin interface that lets you do just that. You can invoke
the analyzer for any text field, provide sample input, and display the resulting token stream.

For example, assume that the following field type definition has been added to schema. xni :

<fiel dType nane="nytextfield" class="solr.TextField" >
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="sol r.Hyphenat edWrdsFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
<anal yzer type="query">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

The objective here (during indexing) is to reconstruct hyphenated words, which may have been split across lines in the text, then to set all words
to lowercase. For queries, you want to skip the de-hyphenation step.

To test this out, point your browser at the Analysis Screen of the Solr Admin Web interface. By default, this will be at the following URL (adjust the
hostname and/or port to match your configuration): http://localhost:8983/solr/#/collection1/analysis. You should see a page like this.

Apache Solr Reference Guide 4.6 118

http://stevemorse.org/phoneticinfo.htm
http://stevemorse.org/phonetics/bmpm.htm
http://localhost:8983/solr/#/collection1/analysis

rr,

L\

Apache

Solr

& Dashboard Field Value (Index) Field Value (Query)

() Logging
A ¥

Analyse Fieldname / FieldType:| _version_ -| ® = Analyse Values

ZH Core Admin
~| Java Properties

= Thread Dump

("] collection1

&8

T Analysis
=
&

Empty Analysis screen

We want to test the field type definition for "mytextfield", defined above. The drop-down labeled "Analyse Fieldname/FieldType" allows choosing
the field or field type to use for the analysis.

There are two "Field Value" boxes, one for how text will be analyzed during indexing and a second for how text will be analyzed for query
processing. In the "Field Value (Index)" box enter some sample text "Super-computer" in this example) to be processed by the analyzer. We will
leave the query field value empty for now.

The result we expect is that Hyphenat edWor dsFi | t er will join the hyphenated pair "Super-" and "computer” into the single word
"Supercomputer", and then Lower CaseFi | t er will set it to "supercomputer"”. Let's see what happens:

Aoache "0‘ Field Value (Index) Field Value (Query)
- Super-
S (o] I F compuer
@ Dashboard
L3 Logging Analyse Fieldname / FieldType: | MYtextfield 1® -
& Core Admin
Java Properties Super Computer
[5375706572) | [436F6d 70757465 72)
Thread Dump o 5
5 15
(% collection1 <ALPHANUM> | <ALPHANUM>
1 2
Super Computer
[5375706572) | [43676d 7075 7465 72]
0 7
5 15
1 2
§ Analysts <ALPHANUM> | <ALPHANUM>
l g super computer
Tt [7375706572] | 63676 7075 7465 72]
1 2
0 7
5 15
<ALPHANUM> | <ALPHANUM>

Running index-time analyzer, verbose output.
The result is two distinct tokens rather than the one we expected. What went wrong? Looking at the first token that came out of
St andar dTokeni zer, we can see the trailing hyphen has been stripped off of "Super-". Checking the documentation for St andar dTokeni zer,

we see that it treats all punctuation characters as delimiters and discards them. What we really want in this case is a whitespace tokenizer that will
preserve the hyphen character when it breaks the text into tokens.

Let's make this change and try again:

Apache Solr Reference Guide 4.6 119

<fiel dType nane="nytextfield" class="solr. TextField">
<anal yzer type="index">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="sol r.Hyphenat edWrdsFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>

</ anal yzer >
<anal yzer type="query">

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>

</ anal yzer >
</fieldType>

Re-submitting the form by clicking "Analyse Values" again, we see the result in the screen shot below.

s,
Apache ’O
-]

Solr

& Dashboard

() Logging

1 Core Admin
Java Properties

Thread Dump

(%] collectionl

¥ Analysis
15}

[

Field Value (Index)
Super-
Computer

Analyse Fieldname / FieldType: | Mytextfield

Super-
[5375 7065 72 2d]
0
6
1

word

SuperComputer

[53 75 7065 72 43 6f6d 70 75 74 65 72]
0

15

1

weord

supercomputer

[73 757065 72 63 6f6d 70 75 74 65 72]
1

0

15

weord

Field Value (Query)

Computer
[43 67 6d 70 75 74 65 72]

Analyse Values

Using WhitespaceTokenizer, expected results.

That's more like it. Because the whitespace tokenizer preserved the trailing hyphen on the first token, Hyphenat edWr dsFi | t er was able to

reconstruct the hyphenated word, which then passed it on to Lower CaseFi | t er, where capital letters are set to lowercase.

Now let's see what happens when invoking the analyzer for query processing. For query terms, we don't want to do de-hyphenation and we do
want to discard punctuation, so let's try the same input on it. We'll copy the same text to the "Field Value (Query)" box and clear the one for index
analysis. We'll also include the full, unhyphenated word as another term to make sure it is processed to lower case as we expect. Submitting
again yields these results:

[/
"

Apache

Solr

@ Dashboard

() Logging

=k Core Admin
Java Properties

Thread Dump

*] collection1

T Analysis
5}

Analyse Fieldname / FieldType:

Field Value (Index)

mytextfield

Field Value (Query)

Super-Computer Supercomputer

Super
5375 7065 72]
0
5
<ALPHANUM>
1

super
[7375706572]
1
0
5
<ALPHANUM>

Computer
[436f6d 70 75 7465 72
6

14

<ALPHANUM >

2

computer

[63 6f6d 70 75 74 65 72]
2

6

14

<ALPHANUM>

Analyse Values

Supercomputer
[53 75 7065 72 63 6f6d 70 75 74 65 72]
15

28

<ALPHANUM>

3

supercomputer
[73 75 7065 7263 6f6d 70 75 74 65 72]
3

15

28

<ALPHANUM>

Query-time analyzer, good results.

We can see that for queries the analyzer behaves the way we want it to. Punctuation is stripped out, Hyphenat edWor dsFi | t er doesn't run, and
we wind up with the three tokens we expected.

Apache Solr Reference Guide 4.6 120

Apache Solr Reference Guide 4.6 121

Indexing and Basic Data Operations

This section describes how Solr adds data to its index. It covers the following topics:
® What Is Indexing?: An overview of Solr's indexing process.
® Simple Post Tool: Information about using post . j ar to quickly upload some content to your system.
® Uploading Data with Index Handlers: Information about using Solr's Index Handlers to upload XML/XSLT, JSON and CSV data.
® Uploading Data with Solr Cell using Apache Tika: Information about using the Solr Cell framework to upload data for indexing.

® Uploading Structured Data Store Data with the Data Import Handler: Information about uploading and indexing data from a structured
data store.

® Updating Parts of Documents: Information about how to use atomic updates and optimistic concurrency with Solr.

® Detecting Languages During Indexing: Information about using language identification during the indexing process.
® De-Duplication: Information about configuring Solr to mark duplicate documents as they are indexed.

® Content Streams: Information about streaming content to Solr Request Handlers.

® UIMA Integration: Information about integrating Solr with Apache's Unstructured Information Management Architecture (UIMA). UIMA
lets you define custom pipelines of Analysis Engines that incrementally add metadata to your documents as annotations.

Indexing Using Client APIs

Using client APIs, such as SolrJ, from your applications is an important option for updating Solr indexes. See the Client APIs section for more
information.

What Is Indexing?

This section describes the process of indexing: adding content to a Solr index and, if necessary, modifying that content or deleting it. By adding
content to an index, we make it searchable by Solr.

A Solr index can accept data from many different sources, including XML files, comma-separated value (CSV) files, data extracted from tables in
a database, and files in common file formats such as Microsoft Word or PDF.

Here are the three most common ways of loading data into a Solr index:

® Using the Solr Cell framework built on Apache Tika for ingesting binary files or structured files such as Office, Word, PDF, and other
proprietary formats.

® Uploading XML files by sending HTTP requests to the Solr server from any environment where such requests can be generated.
® Writing a custom Java application to ingest data through Solr's Java Client API (which is described in more detail in Client APIs. Using
the Java API may be the best choice if you're working with an application, such as a Content Management System (CMS), that offers a
Java API.
Regardless of the method used to ingest data, there is a common basic data structure for data being fed into a Solr index: a document containing
multiple fields, each with a name and containing content, which may be empty. One of the fields is usually designated as a unique 1D field
(analogous to a primary key in a database), although the use of a unique ID field is not strictly required by Solr.
If the field name is defined in the schenma. xm file that is associated with the index, then the analysis steps associated with that field will be
applied to its content when the content is tokenized. Fields that are not explicitly defined in the schema will either be ignored or mapped to a
dynamic field definition (see Documents, Fields, and Schema Design), if one matching the field name exists.

For more information on indexing in Solr, see the Solr Wiki.

The Solr Example Directory

The exanpl e/ directory includes a sample Solr implementation, along with sample documents for uploading into an index. You will find the
example docs in $SOLR_HOVE/ exanpl e/ exanpl edocs.

The cur | Utility for Transferring Files

Apache Solr Reference Guide 4.6 122

https://wiki.apache.org/solr/FrontPage

Many of the instructions and examples in this section make use of the cur | utility for transferring content through a URL. cur | posts and
retrieves data over HTTP, FTP, and many other protocols. Most Linux distributions include a copy of cur | . You'll find curl downloads for Linux,
Windows, and many other operating systems at http://curl.haxx.se/download.html. Documentation for cur | is available here: http://curl.haxx.se/d

ocs/manpage.html.

1 Using cur | or other command line tools for posting data is just fine for examples or tests, but it's not the recommended method

for achieving the best performance for updates in production environments. You will achieve better performance with Solr Cell
or the other methods described in this section.

Instead of cur | , you can use utilities such as GNU wget (http://www.gnu.org/software/wget/) or manage GETs and POSTS
with Perl, although the command line options will differ.

Simple Post Tool

Solr includes a simple command line tool for POSTing raw XML to a Solr port. XML data can be read from files specified as command line
arguments, as raw commandline argument strings, or via STDIN.

The tool is called post . j ar and is found in the 'exampledocs' directory: $SOLR/ exanpl e/ exanpl edocs/ post . j ar includes a cross-platform

Java tool for POST-ing XML documents.

To run it, open a window and enter:

java -jar

post.jar <list of files with

nmessages>

By default, this will contact the server at | ocal host : 8983. The '-help' (or simply '-h' option will output information on its usage (i.e., j ava -j ar

post.jar -help.

Using the Simple Post Tool

Options controlled by System Properties include the Solr URL to post to, the Cont ent - Type of the data, whether a commit or optimize should be
executed, and whether the response should be written to STDOUT. You may override any other request parameter through the - Dpar ans

property

This table lists the supported system properties and their defaults:

Parameter Values

-Ddata args, stdin, files, web
-Dtype <content-type>

-Durl <solr-update-url>
-Dauto yes, no

-Drecursive | yes, no

-Dfiletypes = <type>[,<type>,..]
-Dparams "<key>=<value>[&<key>=<value>...]"
-Dcommit yes, no

-Doptimize | yes, no

-Dout yes, no

Apache Solr Reference Guide 4.6

Default

files

application/xml
http://localhost:8983/solr/update

no

no

xml, json, csv, pdf, doc, docx,
ppt, pptx, xls, xIsx, odt, odp,
ods, rtf, htm, html

none

yes
no

no

Description

Use args to pass arguments along the command line
(such as a command to delete a document). Use files
to pass a filename or regex pattern indicating paths and
filenames. Use stdin to use standard input. Use web
for a very simple web crawler (arguments for this would
be the URL to crawl).

Defines the content-type, if - Daut o is not used.

The Solr URL to send the updates to.

If yes, the tool will guess the file type from file name
suffix, and set type and url accordingly. It also sets the
ID and file name automatically.

Will recurse into sub-folders and index all files.
Specifies the file types to consider when indexing

folders.

HTTP GET params to add to the request, so you don't
need to write the whole URL again. Values must be
URL-encoded.

Perform a commit after adding the documents.
Perform an optimize after adding the documents.

Write the response to an output file.

123

http://curl.haxx.se/download.html
http://curl.haxx.se/docs/manpage.html
http://curl.haxx.se/docs/manpage.html
http://www.gnu.org/software/wget/
http://localhost:8983/solr/update

Examples
There are several ways to use post . j ar . Here are a few examples:

Add all documents with file extension . xni .

java -jar post.jar *.xm

Send XML arguments to delete a document from the index.

java -Ddata=args -jar post.jar '<del ete><i d>42</id></del et e>'

Index all CSV files.

java -Dtype=text/csv -jar post.jar *.csv

Index all JSON files.

java -Dtype=application/json -jar post.jar *.json

Use the extracting request handler to index a PDF file.

java -Durl=[http://]ocal host:8983/sol r/updat e/ extract] -Dparanms=literal.id=a
-Dtype=application/pdf -jar post.jar a.pdf

Automatically detect the content type based on the file extension.

java -Dauto=yes -jar post.jar a.pdf

Automatically detect content types in a folder, and recursively scan it for documents.

java - Dauto=yes -Drecursive=yes -jar post.jar afolder

Automatically detect content types in a folder, but limit it to PPT and HTML files.

java -Dauto=yes -Dfil etypes=ppt,htm -jar post.jar afolder

Uploading Data with Index Handlers

Index Handlers are Request Handlers designed to add, delete and update documents to the index. In addition to having plugins for importing rich
documents using Tika or from structured data sources using the Data Import Handler, Solr natively supports indexing structured documents in
XML, CSV and JSON.

The recommended way to configure & use request handlers is with path based names, that map to paths in the request url - but request handlers
can also be specified with the gt (query type) parameter if the r equest Di spat cher is apprpriately configured.

The example URLs given here reflect the handler configuration in the supplied sol r confi g. xn . If the name associated with the handler is

changed then the URLs will need to be modified. It is possible to access the same handler using more than one name, which can be useful if you
wish to specify different sets of default options.

Apache Solr Reference Guide 4.6 124

Topics covered in this section:

UpdateRequestHandler Configuration

XML Formatted Index Updates

Using XSLT to Transform XML Index Updates
JSON Formated Index Updates

CSV Formated Index Updates

The Combined UpdateRequestHandler

Prior to Solr 4, uploading content with an update request handler required declaring a unique request handler for the format of the content in the
request. Now, there is a unified update request handler that supports XML, CSV, JSON, and javabin update requests, delegating to the
appropriate Cont ent St r eanLoader based on the Cont ent - Type of the Cont ent St r eam

UpdateRequestHandler Configuration

The default configuration file has the update request handler configured by default.

<r equest Handl er name="/update" cl ass="sol r. Updat eRequest Handl er" />

XML Formatted Index Updates

Index update commands can be sent as XML message to the update handler using Cont ent -t ype: appli cati on/ xm or Cont ent-type:
text/xm .

Adding Documents

The XML schema recognized by the update handler for adding documents is very straightforward:
® The <add> element introduces one more documents to be added.
® The <doc> element introduces the fields making up a document.
®* The <fi el d> element presents the content for a specific field.

For example:

<add>
<doc>
<field name="aut hors">Patrick Eagar</field>
<field name="subj ect ">Sports</field>
<field name="dd">796. 35</fi el d>
<field name="nunpages">128</fiel d>
<field nane="desc"></fiel d>
<field name="price">12. 40</fi el d>
<field nane="title" boost="2.0">Sumrer of the all-rounder: Test and chanpi onship
cricket in England 1982</fiel d>
<field nane="i sbn">0002166313</fi el d>
<field name="year pub">1982</fi el d>
<field nane="publisher">Col i ns</field>
</ doc>
<doc boost="2.5">
</ doc>
</ add>

Each element has certain optional attributes which may be specified.

Command Optional Parameter Description
Parameter

Apache Solr Reference Guide 4.6 125

<add> commitWithin= Add the document within the specified number of milliseconds

number

<add> overwrite= Default is true. Indicates if the unique key constraints should be checked to overwrite previous versions of the
boolean same document (see below)

<doc> boost=float Default is 1.0. Sets a boost value for the document.To learn more about boosting, see Searching.

<field> boost=float Default is 1.0. Sets a boost value for the field.

If the document schema defines a unique key, then by default an / updat e operation to add a document will overwrite (ie: replace) any document
in the index with the same unique key. If no unique key has been defined, indexing performance is somewhat faster, as no check has to be made
for an existing documents to replace.

If you have a unique key field, but you feel confident that you can safely bypass the uniqueness check (eg: you build your indexes in batch, and
your indexing code guarantees it never adds the same document more then once) you can specify the {{overwrite="false"} option when adding
your documents.

Commit and Optimize Operations

The <commi t > operation writes all documents loaded since the last commit to one or more segment files on the disk. Before a commit has been
issued, newly indexed content is not visible to searches. The commit operation opens a new searcher, and triggers any event listeners that have
been configured.

Commits may be issued explicitly with a <conmi t / > message, and can also be triggered from <aut oconmi t > parameters in sol r confi g. xm
The <opt i m ze> operation requests Solr to merge internal data structures in order to improve search performance. For a large index,
optimization will take some time to complete, but by merging many small segment files into a larger one, search performance will improve. If you
are using Solr's replication mechanism to distribute searches across many systems, be aware that after an optimize, a complete index will need to

be transferred. In contrast, post-commit transfers are usually much smaller.

The <conmi t > and <opt i m ze> elements accept these optional attributes:

Optional Description

Attribute

maxSegments Default is 1. Optimizes the index to include no more than this number of segments.

waitFlush Default is true. Blocks until index changes are flushed to disk.

waitSearcher D_e_fl’jllult is true. Blocks until a new searcher is opened and registered as the main query searcher, making the changes
visible.

expungeDeletes Default is false. Merges segments and removes deleted documents.

Here are examples of <commit> and <optimize> using optional attributes:

<comit waitFlush="fal se" waitSearcher="fal se"/>
<commit waitFlush="fal se" waitSearcher="fal se" expungeDel etes="true"/>
<optim ze waitFlush="fal se" waitSearcher="fal se"/>

Delete Operations

Documents can be deleted from the index in two ways. "Delete by ID" deletes the document with the specified ID, and can be used only if a
UniquelD field has been defined in the schema. "Delete by Query" deletes all documents matching a specified query, although commi t Wt hi n is
ignored for a Delete by Query. A single delete message can contain multiple delete operations.

<del et e>
<i d>0002166313</i d>
<i d>0031745983</i d>
<quer y>subj ect : sport </ query>
<quer y>publ i sher: pengui n</ query>
</ del et e>

Rollback Operations

Apache Solr Reference Guide 4.6 126

The rollback command rolls back all add and deletes made to the index since the last commit. It neither calls any event listeners nor creates a
new searcher. Its syntax is simple: <r ol | back/ >.

Using cur | to Perform Updates with the Update Request Handler.

You can use the cur | utility to perform any of the above commands, using its - - dat a- bi nary option to append the XML message to the cur |
command, and generating a HTTP POST request. For example:

curl http://local host: 8983/ update -H "Content-Type: text/xm" --data-binary
<add>
<doc>
<field name="aut hors">Patrick Eagar</field>
<field nane="subj ect">Sports</fiel d>
<field name="dd">796. 35</fiel d>
<field nane="i sbn">0002166313</fi el d>
<field name="year pub">1982</fi el d>
<field name="publisher">Collins</field>
</ doc>
</ add>

For posting XML messages contained in a file, you can use the alternative form:

curl http://1ocal host: 8983/ update -H "Content-Type: text/xm" --data-binary
@ryfile. xm

Short requests can also be sent using a HTTP GET command, URL-encoding the request, as in the following. Note the escaping of "<" and ">":

curl http://1ocal host: 8983/ updat e?st ream body=%8Ccomm t/ ¥BE

Responses from Solr take the form shown here:

<?xm version="1.0" encodi ng="UTF-8"?>
<response>
<l st nanme="responseHeader" >
<int name="status">0</int>
<int name="Qrli me">127</i nt >
</lst>
</ response>

The status field will be non-zero in case of failure. The servlet container will generate an appropriate HTML-formatted message in the case of an
error at the HTTP layer.

Using XSLT to Transform XML Index Updates

The UpdateRequestHandler allows you to index any arbitrary XML using the <t r > parameter to apply an XSL transformation. You must have an
XSLT stylesheet in the solr/conf/xslt directory that can transform the incoming data to the expected <add><doc/ ></ add> format, and use the t r
parameter to specify the name of that stylesheet.

Here is an example XSLT stylesheet:

Apache Solr Reference Guide 4.6 127

https://en.wikipedia.org/wiki/XSLT

<xsl :styl esheet xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Transform' versi on="1.0">
<xsl:template match="/">
<add>
<xsl : appl y-tenpl ates sel ect="/randonf docunent"/ >
</ add>
</ xsl:tenpl ate>

<xsl:tenpl ate match="docunent">

<doc boost="5.5">
<xsl : appl y-tenpl ates select="*"/>
</ doc>
</ xsl:tenpl at e>

<xsl:tenpl ate mat ch="node" >
<field name="{@ane}">

<xsl:if test="@nhance!=""">
<xsl :attri bute name="boost" ><xsl| : val ue- of sel ect =" @nhance"/></xsl:attri bute>
</xsl:if>
<xsl : val ue- of sel ect="@al ue"/>
</field>

</ xsl:tenpl ate>

</ xsl : styl esheet >

This stylesheet transforms Solr's XML search result format into Solr's Update XML syntax. One example is to copy a Solr1.3 index (which does

not have CSV response writer) into a format which can be indexed into another Solr file (provided that all fields are stored):

http://1ocal host: 8983/ sol r/sel ect ?2q=*: * &M =xsl t & r =updat eXn . xsl| & ows=1000

You can also use the stylesheet in Xs| t Updat eRequest Handl er to transform an index when updating:

curl "http://Iocal host: 8983/ sol r/update?conmi t =t r ue&t r =updat eXm . xsl " -H
"Content-Type: text/xm" --data-binary @ryexporteddata.xm

For more information about the XML Update Request Handler, see https://wiki.apache.org/solr/lUpdateXmIMessages.

JSON Formated Index Updates

JSON formatted update requests may be sent to Solr's / updat e handler using Cont ent - Type: appl i cation/j son or Cont ent - Type:

text/json.

In addition the default configuration file has an instance of an explicit update request handler configured to assume a default content type of json

when not specified.

<request Handl er nane="/update/json" class="sol r.JsonUpdat eRequest Handl er" >
<l st name="defaul ts">
<str name="stream content Type">application/json</str>
</lst>
</ request Handl er >

Examples

There is a sample JSON file at exanpl e/ exanpl edocs/ books. j son that you can use to add documents to the Solr example server.

Apache Solr Reference Guide 4.6

128

https://wiki.apache.org/solr/UpdateXmlMessages

cd exanpl e/ exanpl edocs
curl "http://local host: 8983/ sol r/update/json?conmmt=true'
--data-binary @ooks.json -H ' Content-type: application/json'

Adding commi t =t r ue to the URL makes the documents immediately searchable.
You should now be able to query for the newly added documents:

http://1ocal host: 8983/ solr/sel ect ?2g=titl e: nonst er s&t =j son& ndent =t r ue returns:

"responseHeader": {
"status":0,
"Qrine": 2,
"parans": {
"indent":"true",
"w":"json",
"gq":"title:nmonsters"}},
"response": {"nunfFound": 1,"start": 0, "docs": |
{
"id":"978-1423103349",
"author":"Ri ck Ri ordan",
"series_t":"Percy Jackson and the d ynpi ans",
"sequence_i": 2,
"genre_s":"fantasy",
"inStock":true,
"price":6.49,
"pages_i ": 304,
"title": [
"The Sea of Monsters"],
"cat":["book", "paperback"]}]

Update Commands

The JSON update handler accepts all of the update commands that the XML update handler supports, through a straightforward mapping.

Multiple commands may be contained in one message:

Apache Solr Reference Guide 4.6

129

http://localhost:8983/solr/select?q=title:monsters&wt=json&indent=true

{
"add": {
"doc": {
"id": "DOCl",
"my_boosted_field": { /* use a map with boost/value for a boosted field */
"boost": 2.3,
"val ue": "test"
b
"my_rultivalued_field": ["aaa", "bbb"] /* use an array for a nulti-val ued
field */
}
b
"add": {
"comm tWthin": 5000, /* commt this docunment within 5 seconds */
"overwite": false, /* don't check for existing docunments with the sane
uni quekey */
"boost": 3.45, /* a docunent boost */
"doc": {
"far: "vi1",
"far: "v2"
}
H
"commit": {},
"optimze": { "waitFlush":fal se, "waitSearcher":false },
"delete": { "id":"ID" }, /* delete by ID */
"delete": { "query":"QUERY" } /* del ete by query */
}

!, Comments are not allowed in JSON, but duplicate names are.

As with other update handlers, parameters such as conmi t, conmi t Wt hi n, opti m ze, and over wri t e may be specified in the URL instead
of in the body of the message.

The JSON update format allows for a simple delete-by-id. The value of a del et e can be an array which contains a list of zero or more specific
document id's (not a range) to be deleted. For example:

"del ete":"nyid"

"del ete": ["idl", "id2"]

The value of a "delete" can be an array which contains a list of zero or more id's to be deleted. It is not a range (start and end).

You can also specify _ver si on_ with each "delete":

String str = "{"delete':"id :50, '_version_':12345}"

You can specify the version of deletes in the body of the update request as well.
For more information about the JSON Update Request Handler, see https://wiki.apache.org/solr/UpdateJSON.
CSV Formated Index Updates

CSV formatted update requests may be sent to Solr's / updat e handler using Cont ent - Type: appl i cati on/ csv or Cont ent - Type:
text/csv.

Apache Solr Reference Guide 4.6 130

https://wiki.apache.org/solr/UpdateJSON

In addition the default configuration file has an instance of an explicit update request handler configured to assume a default content type of csv
when not specified.

<r equest Handl er nanme="/updat e/ csv" cl ass="sol r. CSVRequest Handl er " >
<l st name="defaul ts">
<str nanme="stream cont ent Type" >applicati on/csv</str>
</lst>
</ request Handl er >

Parameters

The CSV handler allows the specification of many parameters in the URL in the form: f. par anet er. opti onal _fi el dnane=val ue.

The table below describes the parameters for the update handler.

Parameter Usage Global = Example
(9) or
Per
Field (f)
separator Character used as field separator; default is "," g,(f: see separator=%
split)
trim If true, remove leading and trailing whitespace from values. Default=false. o,f f.isbn.trim=true
trim=false
header Set to true if first line of input contains field names. These will be used if the g

field_name parameter is absent.

field_name Comma separated list of field names to use when adding documents. g field_name=isbn,price,title
literal.<field_name> Comma separated list of field names to use when processing literal values. g literal.color=red,blue,black
skip Comma separated list of field names to skip. g skip=uninteresting,shoesize
skipLines Number of lines to discard in the input stream before the CSV data starts, g skipLines=5

including the header, if present. Default=0.
encapsulator The character optionally used to surround values to preserve characters such as = g,(f: see = encapsulator="

the CSV separator or whitespace. This standard CSV format handles the split)

encapsulator itself appearing in an encapsulated value by doubling the

encapsulator.
escape The character used for escaping CSV separators or other reserved characters. If g escape=\

an escape is specified, the encapsulator is not used unless also explicitly

specified since most formats use either encapsulation or escaping, not both
keepEmpty Keep and index zero length (empty) fields. Default=false. o,f f.price.keepEmpty=true
map Map one value to another. Format is value:replacement (which can be empty.) o.f map=left:right

f.subject.map=history:bunk

split If true, split a field into multiple values by a separate parser. f
overwrite If true (the default), check for and overwrite duplicate documents, based on the g

uniqueKey field declared in the Solr schema. If you know the documents you are

indexing do not contain any duplicates then you may see a considerable speed

up setting this to false.
commit Issues a commit after the data has been ingested. g
commitWithin Add the document within the specified number of milliseconds. g commitWithin=10000
rowid Map the rowid (line number) to a field specified by the value of the parameter, g rowid=id

for instance if your CSV doesn't have a unique key and you want to use the row

id as such.
rowidOffset Add the given offset (as an int) to the rowid before adding it to the document. g rowidOffset=10

Default is O

For more information on the CSV Update Request Handler, see https://wiki.apache.org/solr/lUpdateCSV.

Apache Solr Reference Guide 4.6 131

https://wiki.apache.org/solr/UpdateCSV

Uploading Data with Solr Cell using Apache Tika

Solr uses code from the Apache Tika project to provide a framework for incorporating many different file-format parsers such as Apache PDFBox
and Apache POl into Solr itself. Working with this framework, Solr's Ext r act i ngRequest Handl er can use Tika to support uploading binary
files, including files in popular formats such as Word and PDF, for data extraction and indexing.

lﬂl As of version 4.4, Solr uses Apache Tika v1.4.

When this framework was under development, it was called the Solr Content Extraction Library or CEL; from that abbreviation came this
framework's name: Solr Cell.

If you want to supply your own ContentHandler for Solr to use, you can extend the ExtractingRequestHandler and override the

creat eFact ory() method. This factory is responsible for constructing the SolrContentHandler that interacts with Tika, and allows literals to
override Tika-parsed values. Set the parameter | i t er al sOver ri de, which normally defaults to *true, to *false to append Tika-parsed values to
literal values.

For more information on Solr's Extracting Request Handler, see https://wiki.apache.org/solr/ExtractingRequestHandler.

Topics covered in this section:

Key Concepts

Trying out Tika with the Solr Example Directory

Input Parameters

Order of Operations

Configuring the Solr Ext r act i ngRequest Handl er

Indexing Encrypted Documents with the ExtractingUpdateRequestHandler
Examples

Sending Documents to Solr with a POST

Sending Documents to Solr with Solr Cell and SolrJ

Related Topics

Key Concepts

When using the Solr Cell framework, it is helpful to keep the following in mind:

® Tika will automatically attempt to determine the input document type (Word, PDF, HTML) and extract the content appropriately. If you like,
you can explicitly specify a MIME type for Tika with the st r eam t ype parameter.

® Tika works by producing an XHTML stream that it feeds to a SAX ContentHandler. SAX is a common interface implemented for many
different XML parsers. For more information, see http://www.saxproject.org/quickstart.html.

® Solr then responds to Tika's SAX events and creates the fields to index.

® Tika produces metadata such as Title, Subject, and Author according to specifications such as the DublinCore. See http://tika.apache.org
/1.4/formats.html for the file types supported.

® Tika adds all the extracted text to the cont ent field. This field is defined as "stored" in schema. xm . It is also copied to the t ext field
with a copyFi el d rule.

® You can map Tika's metadata fields to Solr fields. You can also boost these fields.

® You can pass in literals for field values. Literals will override Tika-parsed values, including fields in the Tika metadata object, the Tika
content field, and any "captured content" fields.

® You can apply an XPath expression to the Tika XHTML to restrict the content that is produced.

@ While Apache Tika is quite powerful, it is not perfect and fails on some files. PDF files are particularly problematic, mostly due to
the PDF format itself. In case of a failure processing any file, the Ext r act i ngRequest Handl er does not have a secondary
mechanism to try to extract some text from the file; it will throw an exception and fail.

Trying out Tika with the Solr Example Directory

You can try out the Tika framework using the example application included in Solr.

Apache Solr Reference Guide 4.6 132

http://lucene.apache.org/tika/
http://incubator.apache.org/pdfbox/
http://poi.apache.org/index.html
http://wiki.apache.org/solr/ContentHandler
http://wiki.apache.org/solr/SolrContentHandler
https://wiki.apache.org/solr/ExtractingRequestHandler
http://www.saxproject.org/quickstart.html
http://tika.apache.org/1.4/formats.html
http://tika.apache.org/1.4/formats.html

Start the Solr example server:

cd exanple -jar start.jar

In a separate window go to the docs/ directory (which contains some nice example docs), or the site directory if you built Solr from source, and
send Solr a file via HTTP POST:

curl "http://local host: 8983/ sol r/update/extract?literal.id=docl&onmit=true' -F
"myfile=@utorial.htm"

The URL above calls the Extraction Request Handler, uploads the file t ut ori al . ht Ml and assigns it the unique ID doc1. Here's a closer look at
the components of this command:

® Theliteral.id=docl parameter provides the necessary unique ID for the document being indexed.

® The conmit=true paraneter causes Solr to perform a commit after indexing the document, making it immediately searchable. For
optimum performance when loading many documents, don't call the commit command until you are done.

® The - F flag instructs curl to POST data using the Content-Type nul ti part/f or m dat a and supports the uploading of binary files. The
@ symbol instructs curl to upload the attached file.

® The argument nyfil e=@utori al . ht M needs a valid path, which can be absolute or relative (for example,
nyfile=@./../site/tutorial.htnm ifyou are still in exampledocs directory).

Now you should be able to execute a query and find that document (open the following link in your browser): http://localhost:8983/solr/select?q=tu
torial.

You may notice that although you can search on any of the text in the sample document, you may not be able to see that text when the document
is retrieved. This is simply because the "content” field generated by Tika is mapped to the Solr field called t ext , which is indexed but not stored.

This operation is controlled by default map rule in the / updat e/ ext ract handler in sol r confi g. xm , and its behavior can be easily changed

or overridden. For example, to store and see all metadata and content, execute the following:

curl
"http://1ocal host: 8983/ sol r/update/extract?literal.id=docl&uprefix=attr_&f map.content=
attr_content&omit=true' -F "nyfile=@utorial.htm"

In this command, the upr ef i x=at t r _ parameter causes all generated fields that aren't defined in the schema to be prefixed with at t r _, which
is a dynamic field that is stored.

The f map. cont ent =at t r _cont ent parameter overrides the default f map. cont ent =t ext causing the content to be added to the
attr_content field instead.

Then run this command to query the document: http://localhost:8983/solr/select?q=attr_content:tutorial

Input Parameters

The table below describes the parameters accepted by the Extraction Request Handler.

Parameter Description

boost.<fieldname> Boosts the specified field by the defined float amount. (Boosting a field alters its importance in a query response. To
learn about boosting fields, see Searching.)

capture Captures XHTML elements with the specified name for a supplementary addition to the Solr document. This
parameter can be useful for copying chunks of the XHTML into a separate field. For instance, it could be used to
grab paragraphs (<p>) and index them into a separate field. Note that content is still also captured into the overall
"content" field.

captureAttr Indexes attributes of the Tika XHTML elements into separate fields, named after the element. If set to true, for
example, when extracting from HTML, Tika can return the href attributes in <a> tags as fields named "a". See the
examples below.

commitWithin Add the document within the specified number of milliseconds.
date.formats Defines the date format patterns to identify in the documents.
defaultField If the uprefix parameter (see below) is not specified and a field cannot be determined, the default field will be used.

Apache Solr Reference Guide 4.6 133

http://localhost:8983/solr/select?q=tutorial
http://localhost:8983/solr/select?q=tutorial
http://localhost:8983/solr/select?q=attr_content:tutorial

extractOnly

extractFormat

fmap.<source_field>

literal.<fieldname>

literalsOverride

lowernames

multipartUploadLimitinKB
passwordsFile
resource.name
resource.password

tika.config

uprefix

xpath

Order of Operations

Default is false. If true, returns the extracted content from Tika without indexing the document. This literally includes
the extracted XHTML as a string in the response. When viewing manually, it may be useful to use a response
format other than XML to aid in viewing the embedded XHTML tags.For an example, see http://wiki.apache.org/solr/
TikaExtractOnlyExampleQutput.

Default is "xml", but the other option is "text". Controls the serialization format of the extract content. The xml format
is actually XHTML, the same format that results from passing the - x command to the Tika command line
application, while the text format is like that produced by Tika's -t command. This parameter is valid only if
extract Only is set to true.

Maps (moves) one field name to another. The sour ce_fi el d must be a field in incoming documents, and the
value is the Solr field to map to. Example: f map. cont ent =t ext causes the data in the cont ent field generated
by Tika to be moved to the Solr's t ext field.

Populates a field with the name supplied with the specified value for each document. The data can be multivalued if
the field is multivalued.

If true (the default), literal field values will override other values with the same field name. If false, literal values
defined with | i t er al . <fi el dname> will be appended to data already in the fields extracted from Tika. If setting
l'iteral sOverri de to "false", the field must be multivalued.

Values are "true” or "false". If true, all field names will be mapped to lowercase with underscores, if needed. For
example, "Content-Type" would be mapped to "content_type."

Useful if uploading very large documents, this defines the KB size of documents to allow.
Defines a file path and name for a file of file name to password mappings.

Specifies the optional name of the file. Tika can use it as a hint for detecting a file's MIME type.
Defines a password to use for a password-protected PDF or OOXML file

Defines a file path and name to a customized Tika configuration file. This is only required if you have customized
your Tika implementation.

Prefixes all fields that are not defined in the schema with the given prefix. This is very useful when combined with
dynamic field definitions. Example: upr ef i x=i gnor ed_ would effectively ignore all unknown fields generated by
Tika given the example schema contains <dynami cFi el d nane="i gnored_*" type="ignored"/>

When extracting, only return Tika XHTML content that satisfies the given XPath expression. See http://tika.apache.
org/1.4/index.html for details on the format of Tika XHTML. See also http://wiki.apache.org/solr/TikaExtractOnlyExa
mpleOutput.

Here is the order in which the Solr Cell framework, using the Extraction Request Handler and Tika, processes its input.

1. Tika generates fields or passes them in as literals specified by | i t er al . <f i el dname>=<val ue>. Ifl i teral sOverri de=f al se,
literals will be appended as multi-value to the Tika-generated field.

2. If I ower nanmes=t r ue, Tika maps fields to lowercase.

3. Tika applies the mapping rules specified by f map. sour ce=t ar get parameters.

4. If upr efi x is specified, any unknown field names are prefixed with that value, else if def aul t Fi el d is specified, any unknown fields
are copied to the default field.

Configuring the Solr Ext r act i ngRequest Handl er

If you are not working in the supplied exanpl e/ sol r directory, you must copy all libraries from exanpl e/ sol r/ i bs intoal i bs directory
within your own solr directory or to a directory you've specified in sol r confi g. xm using the new | i bs directive. The
Ext ract i ngRequest Handl er is not incorporated into the Solr WAR file, so you have to install it separately.

Here is an example of configuring the Ext r act i ngRequest Handl er in sol rconfi g. xm .

Apache Solr Reference Guide 4.6 134

http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput
http://tika.apache.org/1.4/index.html
http://tika.apache.org/1.4/index.html
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput

<request Handl er name="/updat e/ extract"
cl ass="org. apache. sol r. handl er. extracti on. Extracti ngRequest Handl er ">
<l st name="defaul ts">
<str name="fmap. Last- Modi fi ed" >l ast _nodi fi ed</str>
<str name="uprefix">ignored_</str>
</lst>
<l--Optional. Specify a path to a tika configuration file. See the Ti ka docs for
details.-->
<str name="tika.config">/my/path/to/tika.config</str>
<I-- Optional. Specify one or nore date formats to parse. See
Dat eUt i | . DEFAULT_DATE_FORVATS
for default date formats -->
<l st name="date.formts">
<str>yyyy- Mt dd</str>
</[lst>
</ request Handl er >

In the defaults section, we are mapping Tika's Last-Modified Metadata attribute to a field named | ast _nodi fi ed. We are also telling it to ignore
undeclared fields. These are all overridden parameters.

The ti ka. confi g entry points to a file containing a Tika configuration. The dat e. f or mat s allows you to specify various
java. text. Si npl eDat eFor mat s date formats for working with transforming extracted input to a Date. Solr comes configured with the
following date formats (see the Dat eUt i | in Solr):

yyyy- Mt dd' T' HH: nm ss' Z'

yyyy- Mt dd' T' HH: nm ss

yyyy- Mt dd

yyyy- Mt dd hh: nm ss

yyyy- Mt dd HH: nm ss

EEE MW d hh:mmss z yyyy
EEE, dd MW yyyy HH. nmm ss zzz
EEEE, dd-MWtyy HH. mm ss zzz
EEE MW d HH: nm ss yyyy

You may also need to adjust the mul ti part Upl oadLi mi t | nKB attribute as follows if you are submitting very large documents.

<request Di spat cher handl eSel ect ="true" >
<request Par sers enabl eRenot eStream ng="fal se" mul ti partUpl oadLi m t| nKB="20480" />

Multi-Core Configuration

For a multi-core configuration, specify shar edLi b="11ib"' in the <sol r/ > section of sol r. xm in order for Solr to find the JAR files in
exanpl e/solr/lib.

For more information about Solr cores, see The Well-Configured Solr Instance.

Indexing Encrypted Documents with the ExtractingUpdateRequestHandler

The ExtractingRequestHandler will decrypt encrypted files and index their content if you supply a password in either r esour ce. passwor d on
the request, or in a passwor dsFi | e file.

In the case of passwor dsFi | e, the file supplied must be formatted so there is one line per rule. Each rule contains a file name regular
expression, followed by "=", then the password in clear-text. Because the passwords are in clear-text, the file should have strict access
restrictions.

This is a coment

nyFi | eNane = nyPasswor d
.*\ . docx$ = nmyWor dPasswor d
.*\ . pdf$ = nyPdf Password

Apache Solr Reference Guide 4.6 135

Examples

Metadata

As mentioned before, Tika produces metadata about the document. Metadata describes different aspects of a document, such as the author's
name, the number of pages, the file size, and so on. The metadata produced depends on the type of document submitted. For instance, PDFs
have different metadata than Word documents do.

In addition to Tika's metadata, Solr adds the following metadata (defined in Ext r act i ngMet adat aConst ant s):

Solr Metadata Description

The name of the Content Stream as uploaded to Solr. Depending on how the file is uploaded, this may or may not be
set

stream_name

stream_source_info = Any source info about the stream. (See the section on Content Streams later in this section.)
stream_size The size of the stream in bytes.

stream_content_type = The content type of the stream, if available.

. We recommend that you try using the ext r act Onl y option to discover which values Solr is setting for these metadata
elements.

Examples of Uploads Using the Extraction Request Handler

Capture and Mapping

The command below captures <di v> tags separately, and then maps all the instances of that field to a dynamic field named f oo_t .

curl
"http://1ocal host:8983/sol r/update/extract?literal.id=doc2&captureAttr=true&defaultFie

| d=t ext & map. di v=f oo_t &capture=div" -F "tutorial =@utorial.pdf"

Capture, Mapping, and Boosting

The command below captures <di v> tags separately, maps the field to a dynamic field named f oo_t , then boosts f oo_t by 3.

curl
"http://1ocal host: 8983/ sol r/update/extract?literal.id=doc3&captureAttr=true&defaul tFie

| d=t ext &capt ur e=di v&f map. di v=f 0o_t &oost.foo_t=3" -F "tutorial =@utorial.pdf"

Using Literals to Define Your Own Metadata

To add in your own metadata, pass in the literal parameter along with the file:

curl
"http://1ocal host: 8983/ sol r/update/extract?literal.id=doc4&captureAttr=true&defaultFie

| d=t ext &capt ur e=di v&f map. di v=f oo_t &oost . foo_t=3& iteral . bl ah_s=Bah" -F
"tutorial =@utorial.pdf"

XPath

The example below passes in an XPath expression to restrict the XHTML returned by Tika:

Apache Solr Reference Guide 4.6 136

curl

"http://1ocal host: 8983/ sol r/update/extract?literal.id=doc5&captureAttr=true&defaultFie
| d=t ext &apt ur e=di v&f nmap. di v=f 00_t &oost.foo_t=3& iteral.id=i d&pat h=/xhtm : htm /xhtm
:body/ xhtm : di v/ descendant : node()" -F "tutorial=@utorial.pdf"

Extracting Data without Indexing It

Solr allows you to extract data without indexing. You might want to do this if you're using Solr solely as an extraction server or if you're interested
in testing Solr extraction.

The example below sets the ext ract Onl y=t rue par anet er to extract data without indexing it.

curl "http://local host: 8983/ sol r/ updat e/ extract ?&xtract Onl y=true" --data-binary
@utorial.htm -H ' Content-type:text/htm"

The output includes XML generated by Tika (and further escaped by Solr's XML) using a different output format to make it more readable:

curl "http://1ocal host: 8983/ sol r/ updat e/ ext ract ?&extract Onl y=t r ue&wt =r uby& ndent =t r ue"
--data-binary @utorial.htm -H'Content-type:text/htm"

Sending Documents to Solr with a POST

The example below streams the file as the body of the POST, which does not, then, provide information to Solr about the name of the file.

curl "http://local host: 8983/ sol r/update/extract?literal.id=doc5&defaul tFi el d=text"
--data-binary @utorial.html -H'Content-type:text/htm"

Sending Documents to Solr with Solr Cell and SolrJ

Solrd is a Java client that you can use to add documents to the index, update the index, or query the index. You'll find more information on SolrJ
in Client APls.

Here's an example of using Solr Cell and SolrJ to add documents to a Solr index.

First, let's use SolrJ to create a new SolrServer, then we'll construct a request containing a ContentStream (essentially a wrapper around a file)
and sent it to Solr:

public class Sol rCell Request Denp {
public static void main (String[] args){color} throws |CException,
Sol r Ser ver Excepti on {
Sol r Server server = new HttpSolrServer("http://1ocal host:8983/solr");
Cont ent St r eamJpdat eRequest req = new
Cont ent St r eamJpdat eRequest ("/ updat e/ extract");
req. addFil e(new Fil e("apache-solr/site/features. pdf"));
req. set Paranm(Ext racti ngPar anms. EXTRACT_ONLY, "true");
NamedLi st & t; Cbj ect > ; result = server.request(req);
Systemout.printin("Result: " + result);

This operation streams the file f eat ur es. pdf into the Solr index.

The sample code above calls the extract command, but you can easily substitute other commands that are supported by Solr Cell. The key class
to use is the Cont ent St r eanlpdat eRequest , which makes sure the ContentStreams are set properly. SolrJ takes care of the rest.

Note that the Cont ent St r eanlUpdat eRequest is not just specific to Solr Cell. You can send CSV to the CSV Update handler and to any other
Request Handler that works with Content Streams for updates.

Apache Solr Reference Guide 4.6 137

Related Topics

® ExtractingRequestHandler

Uploading Structured Data Store Data with the Data Import Handler

Many search applications store the content to be indexed in a structured data store, such as a relational database. The Data Import Handler (DIH)
provides a mechanism for importing content from a data store and indexing it. In addition to relational databases, DIH can index content from
HTTP based data sources such as RSS and ATOM feeds, e-mail repositories, and structured XML where an XPath processor is used to generate
fields.

1, The DatalmportHandler jars are no longer included in the Solr WAR. You should add them to Solr's lib directory, or reference
them via the <I i b> directive in sol rconfi g. xm .

For more information about the Data Import Handler, see https://wiki.apache.org/solr/DatalmportHandler.

Topics covered in this section:

Concepts and Terminology

Configuration

Data Import Handler Commands

Property Writer

Data Sources

Entity Processors

Transformers

Special Commands for the Data Import Handler

Concepts and Terminology

Descriptions of the Data Import Handler use several familiar terms, such as entity and processor, in specific ways, as explained in the table below.

Term Definition

Datasource | As its name suggests, a datasource defines the location of the data of interest. For a database, it's a DSN. For an HTTP
datasource, it's the base URL.

Entity Conceptually, an entity is processed to generate a set of documents, containing multiple fields, which (after optionally being
transformed in various ways) are sent to Solr for indexing. For a RDBMS data source, an entity is a view or table, which would be
processed by one or more SQL statements to generate a set of rows (documents) with one or more columns (fields).

Processor An entity processor does the work of extracting content from a data source, transforming it, and adding it to the index. Custom
entity processors can be written to extend or replace the ones supplied.

Transformer Each set of fields fetched by the entity may optionally be transformed. This process can modify the fields, create new fields, or
generate multiple rows/documents form a single row. There are several built-in transformers in the DIH, which perform functions
such as modifying dates and stripping HTML. It is possible to write custom transformers using the publicly available interface.

Configuration

Configuring sol rconfi g. xm

The Data Import Handler has to be registered in sol r conf i g. xm . For example:

<r equest Handl er nane="/dat ai nport"
cl ass="org. apache. sol r. handl er. dat ai nport. Dat al nport Handl er" >
<l st name="defaul ts">
<str name="config">/path/to/ my/ Dl Hconfigfile.xm </str>
</lst>
</ request Handl er >

The only required parameter is the conf i g parameter, which specifies the location of the DIH configuration file that contains specifications for the
data source, how to fetch data, what data to fetch, and how to process it to generate the Solr documents to be posted to the index.

Apache Solr Reference Guide 4.6 138

http://wiki.apache.org/solr/ExtractingRequestHandler
https://wiki.apache.org/solr/DataImportHandler

You can have multiple DIH configuration files. Each file would require a separate definition in the sol r conf i g. xm file, specifying a path to the
file.

Configuring the DIH Configuration File

There is a sample DIH application distributed with Solr in the directory exanpl e/ exanpl e- DI H. This accesses a small hsqldb database. Details
of how to run this example can be found in the README.txt file. The sample DIH configuration can be found in
exanpl e/ exanpl e- Dl H sol r/ db/ conf / db- dat a- confi g. xnl .

An annotated configuration file, based on the sample, is shown below. It extracts fields from the four tables defining a simple product database,
with this schema. More information about the parameters and options shown here are described in the sections following.

<dat aConfi g>
<l-- The first elenment is the dataSource, in this case an HSQ.DB dat abase.
The path to the JDBC driver and the JDBC URL and login credentials are all
speci fied here.
Ot her permissible attributes include whether or not to autoconmit to Solr,the
bat chsi ze
used in the JDBC connection, a 'readOnly' flag -->
<dat aSource driver="org. hsqgl db. jdbcDriver" url="jdbc: hsql db: ./ exanpl e- Dl H hsql db/ ex"
user="sa" />

<I-- a '"docunent' element follows, containing nmultiple "entity' elenents.
Note that 'entity' elenents can be nested, and this allows the entity
rel ationships in the sanple database to be mrrored here, so that we can
generate a denornalized Solr record which may include multiple features
for one item for instance -->
<docunent >

<l-- The possible attributes for the entity elenment are described bel ow
Entity el ements nmay contain one or nore 'field elenents, which map
the data source field names to Solr fields, and optionally specify
per-field transformations -->
<l-- this entity is the '"root' entity. -->
<entity nanme="itenl query="select * fromitent
del taQuery="select id fromitemwhere |ast_nodified >
"${datai nporter.last_index_time}"">
<field col um="NAME" name="name" />

<l-- This entity is nested and reflects the one-to-many rel ati onship between an item
and its multiple features.
Note the use of variables; ${itemID} is the value of the colum 'ID for the
current item
('item referring to the entity nane) -->
<entity nanme="feature"
query="sel ect DESCRI PTI ON from FEATURE where | TEM ID="${item ID}"'"
del taQuery="sel ect | TEM ID from FEATURE where | ast_nodified >
"${datai nporter.last_index_tine}""
parent Del taQuery="select ID fromitemwhere | D=${feature. | TEM I|D}">
<field name="features" col um="DESCRI PTION' />
</entity>
<entity nane="item category"
query="sel ect CATEGORY_ID fromitemcategory where I TEMID="${itemID}""
del taQuery="sel ect | TEM ID, CATEGORY_ID fromitem category where
| ast_nodified > '${datai nporter.last_index_time}""
parent Del t aQuery="sel ect ID fromitem where
| D=%{item category. | TEM | D} ">
<entity nane="category"
query="sel ect DESCRI PTI ON from category where ID =
"${item cat egory. CATEGORY_I D}"' "
del taQuery="select ID fromcategory where |ast_nodified >

Apache Solr Reference Guide 4.6 139

"${datai nporter.last_index_time}""

CATEGORY_| D=${ cat egory. | D} ">
<field colum="description”
</entity>
</entity>
</entity>

Apache Solr Reference Guide 4.6

par ent Del t aQuer y="sel ect

nane="cat"

I TEM | D, CATEGORY_ID fromitem category where

/>

140

</ docunent >
</ dat aConfi g>

Datasources can still be specified in sol r conf i g. xm . These must be specified in the defaults section of the handler in sol r confi g. xm .
However, these are not parsed until the main configuration is loaded.

The entire configuration itself can be passed as a request parameter using the dat aConf i g parameter rather than using a file. When
configuration errors are encountered, the error message is returned in XML format.

In Solr 4.1, a new property was added, the propertyW it er element, which allows defining the date format and locale for use with delta
queries. It also allows customizing the name and location of the properties file.

The r el oad- confi g command is still supported, which is useful for validating a new configuration file, or if you want to specify a file, load it, and
not have it reloaded again on import. If there is an xm mistake in the configuration a user-friendly message is returned in xm format. You can
then fix the problem and do ar el oad- confi g.

@ You can also view the DIH configuration in the Solr Admin UI. There is also an interface to import content.

Data Import Handler Commands

DIH commands are sent to Solr via an HTTP request. The following operations are supported.

Command Description
abort Aborts an ongoing operation. The URL is ht t p: / / <host >: <port >/ sol r/ dat ai npor t 2command=abort.
delta-import For incremental imports and change detection. The command is of the form

http://<host>: <port>/sol r/ dat ai mport ?command=del t a- i mpor t . It supports the same clean, commit, optimize
and debug parameters as full-import command.

full-inmport A Full Import operation can be started with a URL of the form
htt p: // <host >: <por t >/ sol r/ dat ai npor t 2comrand=f ul | -i mpor t . The command returns immediately. The
operation will be started in a new thread and the status attribute in the response should be shown as busy. The operation
may take some time depending on the size of dataset. Queries to Solr are not blocked during full-imports.
When a full-import command is executed, it stores the start time of the operation in a file located at
conf/dat ai nport. properti es. This stored timestamp is used when a delta-import operation is executed.
For a list of parameters that can be passed to this command, see below.

rel oad- confi g If the configuration file has been changed and you wish to reload it without restarting Solr, run the command
http://<host>: <port>/sol r/ dat ai nport ?conmand=r el oad- confi g.

status The URL is ht t p: / / <host >: <port >/ sol r/ dat ai nport ?command=st at us. It returns statistics on the number of
documents created, deleted, queries run, rows fetched, status, and so on.

Parameters for the ful | -i nport Command

The ful | -i nport command accepts the following parameters:

Parameter Description

clean Default is true. Tells whether to clean up the index before the indexing is started.
commit Default is true. Tells whether to commit after the operation.
debug Default is false Runs the command in debug mode. It is used by the interactive development mode. Note that in debug mode,

documents are never committed automatically. If you want to run debug mode and commit the results too, add conmmi t =t r ue as
a request parameter.

entity The name of an entity directly under the <docunent > tag in the configuration file. Use this to execute one or more entities
selectively. Multiple "entity" parameters can be passed on to run multiple entities at once. If nothing is passed, all entities are
executed.

optimize Default is true. Tells Solr whether to optimize after the operation.

Property Writer

The propert yWi t er element defines the date format and locale for use with delta queries. It is an optional configuration. Add the element to

Apache Solr Reference Guide 4.6 141

the DIH configuration file, directly under the dat aConf i g element.

<propertyWiter dateFormat="yyyy-M#dd HH nm ss" type="Sinpl eProperti esWiter"
directory="data" fil enane="ny_di h. properties” |ocale="en_US" />

The parameters available are:

Parameter = Description
dateFormat = A java.text.SimpleDateFormat to use when converting the date to text. The default is "yyyy-MM-dd HH:mm:ss".

type The implementation class. Use Si npl eProperti esWi t er for non-SolrCloud installations. If using SolrCloud, use
ZKProperti esWi ter. If this is not specified, it will default to the appropriate class depending on if SolrCloud mode is enabled.

directory Used with the Si npl eProperti esWiter only). The directory for the properties file. If not specified, the default is "conf".

filename Used with the Si mpl eProperti esWiter only). The name of the properties file. If not specified, the default is the
requestHandler name (as defined in sol r confi g. xnl , appended by ".properties” (i.e., "dataimport.properties").

locale The locale. If not defined, the ROOT locale is used. It must be specified as language-country. For example, en- US.

Data Sources

A data source specifies the origin of data and its type. Somewhat confusingly, some data sources are configured within the associated entity
processor. Data sources can also be specified in sol r conf i g. xm , which is useful when you have multiple environments (for example,
development, QA, and production) differing only in their data sources.

You can create a custom data source by writing a class that extends or g. apache. sol r. handl er. dat ai npor t . Dat aSour ce.

The mandatory attributes for a data source definition are its name and type. The name identifies the data source to an Entity element.

The types of data sources available are described below.
ContentStreamDataSource
This takes the POST data as the data source. This can be used with any EntityProcessor that uses a Dat aSour ce<Reader >.

FieldReaderDataSource

This can be used where a database field contains XML which you wish to process using the XpathEntityProcessor. You would set up a
configuration with both JDBC and FieldReader data sources, and two entities, as follows:

<dat aSour ce name="al" driver="org. hsqgl db.jdbcDriver" ... [>
<dat aSour ce nanme="a2" type=Fi el dReader Dat aSource" />

<l-- processor for database -->

<entity name ="el" dataSource="al" processor="SQ.EntityProcessor" pk="docid"
query="select * fromt1 ...">

<I-- nested XpathEntity; the field in the parent which is to be used for
Xpath is set in the "datafield" attribute in place of the "url" attribute -->

<entity name="e2"
dat aSour ce="a2"
processor =" XPat hEnti t yProcessor"
dat aFi el d="el. fi el dToUseFor XPat h"

<I-- Xpath configuration follows -->

</entity>
</entity>

Apache Solr Reference Guide 4.6 142

The FieldReaderDataSource can take an encodi ng parameter, which will default to "UTF-8" if not specified.It must be specified as
language-country. For example, en- US.

FileDataSource

This can be used like an URLDataSource, but is used to fetch content from files on disk. The only difference from URLDataSource, when
accessing disk files, is how a pathname is specified.

This data source accepts these optional attributes.

Optional Attribute Description

basePath The base path relative to which the value is evaluated if it is not absolute.
encoding Defines the character encoding to use. If not defined, UTF-8 is used.
JdbcDataSource

This is the default datasource. It's used with the SQLEntityProcessor. See the example in the FieldReaderDataSource section for details on
configuration.

URLDataSource

This data source is often used with XPathEntityProcessor to fetch content from an underlying fil e: // or htt p:// location. Here's an example:

<dat aSour ce nane="a"
t ype="URLDat aSour ce"
baseUr| ="http://host:port/"
encodi ng="UTF- 8"
connecti onTi neout =" 5000"
readTi neout =" 10000"/ >

The URLDataSource type accepts these optional parameters:

Optional Description
Parameter
baseURL Specifies a new baseURL for pathnames. You can use this to specify host/port changes between Dev/QA/Prod

environments. Using this attribute isolates the changes to be made to the sol rconfi g. xm
connectionTimeout = Specifies the length of time in milliseconds after which the connection should time out. The default value is 5000ms.
encoding By default the encoding in the response header is used. You can use this property to override the default encoding.

readTimeout Specifies the length of time in milliseconds after which a read operation should time out. The default value is 10000ms.

Entity Processors
Entity processors extract data, transform it, and add it to a Solr index. Examples of entities include views or tables in a data store.

Each processor has its own set of attributes, described in its own section below. In addition, there are non-specific attributes common to all
entities which may be specified.

Attribute Use

datasource The name of a data source. Used if there are multiple data sources, specified, in which case each one must have a
name.

name Required. The unique name used to identify an entity.

pk The primary key for the entity. It is optional, and required only when using delta-imports. It has no relation to the

uniqueKey defined in schema. xm but they can both be the same. It is mandatory if you do delta-imports and then
refers to the column name in ${ dat ai nport er. del t a. <col utm- name>} which is used as the primary key.

processor Default is SQLEntityProcessor. Required only if the datasource is not RDBMS.

Apache Solr Reference Guide 4.6 143

onError Permissible values are (abort|skip|continue) . The default value is 'abort'. 'Skip' skips the current document. 'Continue'
ignores the error and processing continues.

prelmportDeleteQuery = Before a full-import command, use this query this to cleanup the index instead of using ":'. This is honored only on an
entity that is an immediate sub-child of <docunent >.

postimportDeleteQuery = Similar to the above, but executed after the import has completed.
rootEntity By default the entities immediately under the <docunent > are root entities. If this attribute is set to false, the entity
directly falling under that entity will be treated as the root entity (and so on). For every row returned by the root entity,

a document is created in Solr.

transformer Optional. One or more transformers to be applied on this entity.

The SQL Entity Processor

The SqlEntityProcessor is the default processor. The associated data source should be a JDBC URL.

The entity attributes specific to this processor are shown in the table below.

Attribute Use
query Required. The SQL query used to select rows.
deltaQuery SQL query used if the operation is delta-import. This query selects the primary keys of the rows which will be parts of the

delta-update. The pks will be available to the deltalmportQuery through the variable
${ dat ai npor t er. del t a. <col um- nanme>}.

parentDeltaQuery = SQL query used if the operation is delta-import.

deletedPkQuery = SQL query used if the operation is delta-import.

deltalmportQuery = SQL query used if the operation is delta-import. If this is not present, DIH tries to construct the import query by(after
identifying the delta) modifying the 'query’ (this is error prone). There is a namespace

${ dat ai npor t er. del t a. <col utm- name>} which can be used in this query. For example, sel ect * fromtbl
wher e i d=${dat ai nporter.delta.id}

The XPathEntityProcessor

This processor is used when indexing XML formatted data. The data source is typically URLDataSource or FileDataSource. Xpath can also be
used with the FileListEntityProcessor described below, to generate a document from each file.

The entity attributes unique to this processor are shown below.

Attribute Use

Processor Required. Must be set to "XpathEntityProcessor".

url Required. HTTP URL or file location.

stream Optional: Set to true for a large file or download.

forEach Required unless you define useSol r AddSchema. The Xpath expression which demarcates each record. This will be

used to set up the processing loop.

xsl Optional: Its value (a URL or filesystem path) is the name of a resource used as a preprocessor for applying the XSL
transformation.

useSolrAddSchema | Set this to true if the content is in the form of the standard Solr update XML schema.

flatten Optional: If set true, then text from under all the tags is extracted into one field.

Each field element in the entity can have the following attributes as well as the default ones.

Attribute Use
xpath Required. The XPath expression which will extract the content from the record for this field. Only a subset of Xpath syntax is
supported.

commonField = Optional. If true, then when this field is encountered in a record it will be copied to future records when creating a Solr
document.

Apache Solr Reference Guide 4.6 144

Example:

<!-- slashdot RSS Feed --->
<dat aConfi g>

<dat aSour ce type="HttpDat aSource" />

<docunent >

<entity nane="sl ashdot"

pk="11ink"

url ="http://rss. sl ashdot. org/ Sl ashdot/ sl ashdot "
processor =" XPat hEnt i t yPr ocessor"

<l-- forEach sets up a processing loop ; here there are two expressions-->

f or Each="/ RDF/ channel | /RDF/itent
t ransf or ner =" Dat eFor mat Tr ansf or ner " >
<field col um="source"
xpat h="/ RDF/ channel /title"
conmonFi el d="true" />
<field col um="source-Iink"
xpat h="/ RDF/ channel / | i nk"
conmonFi el d="t rue"/ >
<field col um="subject"
xpat h="/ RDF/ channel / subj ect"
comonFi el d="true" />
<field colum="title"
xpath="/RDF/itenmtitle" />
<field col um="1ink"
xpat h="/RDF/itent | ink" />
<field col um="description"
xpat h="/ RDF/i t enl descri ption" />
<field colum="creator"
xpat h="/RDF/item creator" />
<field colum="item subject”
xpat h="/RDF/i t enf subj ect” />
<field col um="date"
xpat h="/ RDF/ i t em dat e"
dat eTi meFor nat ="yyyy- M dd' T' hh: mm ss" />
<field col um="sl ash-depart nent"
xpat h="/RDF/i teni departnment" />
<field col um="sl ash-secti on"
xpat h="/RDF/ i tem section" />
<field col um="sl ash- comment s"
xpat h="/RDF/ i t enl conment s" />
</entity>
</ docunent >
</ dat aConfi g>

http://wiki.apache.org/solr/MailEntityProcessor

The TikaEntityProcessor

The TikaEntityProcessor uses Apache Tika to process incoming documents. This is similar to Uploading Data with Solr Cell using Apache Tika,
but using the DatalmportHandler options instead.

The exanpl e- DI Hdirectory in Solr's exanpl e directory shows one option for using the TikaEntityProcessor. Here is the sample
dat a- confi g. xm file:

Apache Solr Reference Guide 4.6 145

http://wiki.apache.org/solr/MailEntityProcessor

<dat aConfi g>
<dat aSour ce type="Bi nFi | eDat aSource" />
<docunent >
<entity name="tika-test" processor="Ti kaEntityProcessor"
url="../contrib/extraction/src/test-files/extraction/solr-word. pdf"
format="text">
<field colum="Aut hor" nanme="author" nmeta="true"/>
<field colum="title" name="title" neta="true"/>
<field colum="text" nane="text"/>
</entity>
</ docunent >
</ dat aConfi g>

The parameters for this processor are described in the table below:

Attribute Use

dataSource = This parameter defines the data source and an optional name which can be referred to in later parts of the configuration if
needed. This is the same dataSource explained in the description of general entity processor attributes above.

The available data source types for this processor are:
* BinURLDataSource: used for HTTP resources, but can also be used for files.
® BinContentStreamDataSource: used for uploading content as a stream.
® BinFileDataSource: used for content on the local filesystem.
url The path to the source file(s), as a file path or a traditional internet URL. This parameter is required.

htmIMapper = Allows control of how Tika parses HTML. The "default" mapper strips much of the HTML from documents while the “identity"
mapper passes all HTML as-is with no modifications. If this parameter is defined, it must be either default or identity; if it is
absent, "default" is assumed.

format The output format. The options are text, xml, html or none. The default is "text" if not defined. The format "none" can be used if
metadata only should be indexed and not the body of the documents.

parser The default parser is or g. apache. ti ka. par ser. Aut oDet ect Par ser . If a custom or other parser should be used, it should
be entered as a fully-qualified name of the class and path.

fields The list of fields from the input documents and how they should be mapped to Solr fields. If the attribute net a is defined as
"true”, the field will be obtained from the metadata of the document and not parsed from the body of the main text.

The FileListEntityProcessor

This processor is basically a wrapper, and is designed to generate a set of files satisfying conditions specified in the attributes which can then be
passed to another processor, such as the XPathEntityProcessor. The entity information for this processor would be nested within the
FileListEnitity entry. It generates four implicit fields: fi | eAbsol ut ePat h, fil eSi ze, fi | eLast Modi fi ed, fi | eNane which can be used in the
nested processor. This processor does not use a data source.

The attributes specific to this processor are described in the table below:

Attribute Use

fileName Required. A regular expression pattern to identify files to be included.

basedir Required. The base directory (absolute path).

recursive Whether to search directories recursively. Default is ‘false’.

excludes A regular expression pattern to identify files which will be excluded.

newerThan @A date in the format yyyy- M ddHH: mm ss or a date math expression (NOW - 2YEARS).

olderThan | A date, using the same formats as newerThan.

rootEntity This should be set to false. This ensures that each row (filepath) emitted by this processor is considered to be a document.

dataSource = Must be set to null.

Apache Solr Reference Guide 4.6 146

The example below shows the combination of the FileListEntityProcessor with another processor which will generate a set of fields from each file
found.

<dat aConfi g>
<dat aSour ce type="Fi | eDat aSour ce"/><docunent >
<l-- this outer processor generates a list of files satisfying the conditions
specified in the attributes -->
<entity name="f" processor="FilelListEntityProcessor"
fil eName=".*xm"
newer Than="" NOW 30DAYS' "
recursive="true"
rootEntity="fal se"
dat aSour ce="nul | "
baseDi r ="/ nmy/ docunent/di rectory">

<l-- this processor extracts content using Xpath fromeach file found -->

<entity name="nested" processor="XPathEntityProcessor"
forEach="/rootel ement” url="${f.fil eAbsol utePath}" >
<field col um="nanme" xpath="/rootel erent/nanme"/>
<field col um="nunber" xpath="/rootel enment/nunber"/>
</entity>
</entity>
</ docunent >
</ dat aConfi g>

LineEntityProcessor

This EntityProcessor reads all content from the data source on a line by line basis and returns a field called r awLi ne for each line read. The
content is not parsed in any way; however, you may add transformers to manipulate the data within the r awLi ne field, or to create other
additional fields.

The lines read can be filtered by two regular expressions specified with the accept Li neRegex and oni t Li neRegex attributes. The table below
describes the LineEntityProcessor's attributes:

Attribute Description

url A required attribute that specifies the location of the input file in a way that is compatible with the configured data source. If
this value is relative and you are using FileDataSource or URLDataSource, it assumed to be relative to baseLoc.

acceptLineRegex = An optional attribute that if present discards any line which does not match the regExp.

omitLineRegex An optional attribute that is applied after any acceptLineRegex and that discards any line which matches this regExp.

For example:

<entity name="jc"
processor ="Li neEntityProcessor"”
accept Li neRegex="".*\ . xm $"
om t Li neRegex="/ obsol et e"
url="file:///Volunes/ts/files.lis"
root Entity="fal se"
dat aSour ce="nyURI r eader 1"
transf or ner =" RegexTr ansf or ner, Dat eFor nat Tr ansf or ner "
>

While there are use cases where you might need to create a Solr document for each line read from a file, it is expected that in most cases that the
lines read by this processor will consist of a pathname, which in turn will be consumed by another EntityProcessor, such as XPathEntityProcessor

Apache Solr Reference Guide 4.6 147

http://wiki.apache.org/solr/PathEntityProcessor

PlainTextEntityProcessor

This EntityProcessor reads all content from the data source into an single implicit field called pl ai nText . The content is not parsed in any way,
however you may add transformers to manipulate the data within the pl ai nText as needed, or to create other additional fields.

For example:

<entity processor="Pl ai nText EntityProcessor" name="x" url="http://abc.com a.txt"
dat aSour ce="dat a- sour ce- nane" >

<l-- copies the text to a field called "text' in Solr-->
<field colum="pl ai nText" name="text"/>
</entity>

Ensure that the dataSource is of type Dat aSour ce<Reader > (Fi | eDat aSour ce, URLDat aSour ce).

Transformers

Transformers manipulate the fields in a document returned by an entity. A transformer can create new fields or modify existing ones. You must tell
the entity which transformers your import operation will be using, by adding an attribute containing a comma separated list to the <enti t y>
element.

<entity name="abcde"
transforner="org. apache.solr....,my.own.transformer,..." />

Specific transformation rules are then added to the attributes of a <f i el d> element, as shown in the examples below. The transformers are
applied in the order in which they are specified in the transformer attribute.

The Data Import Handler contains several built-in transformers. You can also write your own custom transformers, as described in the Solr Wiki
(see http://wiki.apache.org/solr/DIHCustomTransformer). The ScriptTransformer (described below) offers an alternative method for writing your
own transformers.

Solr includes the following built-in transformers:

Transformer Name Use

ClobTransformer Used to create a String out of a Clob type in database.
DateFormatTransformer Parse date/time instances.

HTMLStripTransformer Strip HTML from a field.

LogTransformer Used to log data to log files or a console.

NumberFormatTransformer Uses the NumberFormat class in java to parse a string into a number.

RegexTransformer Use regular expressions to manipulate fields.
ScriptTransformer Write transformers in Javascript or any other scripting language supported by Java. Requires Java 6.
TemplateTransformer Transform a field using a template.

These transformers are described below.

ClobTransformer

You can use the ClobTransformer to create a string out of a CLOB in a database. A CLOB is a character large object: a collection of character
data typically stored in a separate location that is referenced in the database. See http://en.wikipedia.org/wiki/Character_large_object. Here's an
example of invoking the ClobTransformer.

<entity nanme="e" transfornmer="C obTransforner" ..>
<field col um="hugeText Fi el d" cl ob="true" />

</entity>

The ClobTransformer accepts these attributes:

Apache Solr Reference Guide 4.6 148

http://wiki.apache.org/solr/DIHCustomTransformer
http://en.wikipedia.org/wiki/Character_large_object

Attribute Description

clob Boolean value to signal if ClobTransformer should process this field or not. If this attribute is omitted, then the corresponding
field is not transformed.

sourceColName = The source column to be used as input. If this is absent source and target are same

The DateFormatTransformer

This transformer converts dates from one format to another. This would be useful, for example, in a situation where you wanted to convert a field
with a fully specified date/time into a less precise date format, for use in faceting.

DateFormatTransformer applies only on the fields with an attribute dat eTi neFor mat . Other fields are not modified.

This transformer recognizes the following attributes:

Attribute Description
dateTimeFormat The format used for parsing this field. This must comply with the syntax of the JavaSimpleDateFormat class.
sourceColName | The column on which the dateFormat is to be applied. If this is absent source and target are same.

locale The locale to use for date transformations. If not specified, the ROOT locale will be used. It must be specified as
language-country. For example, en- US.

Here is example code that returns the date rounded up to the month "2007-JUL":

<entity nanme="en" pk="id" transforner="DateTi neTransformer" ... >

<field col um="date"
sour ceCol Name="f ul | dat e"
dat eTi neFor mat =" yyyy- MMWM'/ >
</entity>

The HTMLStripTransformer

You can use this transformer to strip HTML out of a field. For example:

<entity name="e" transfornmer="HTM.Stri pTransforner"” ..>
<field colum="htm Text" stripHTM.="true" />

</entity>

There is one attribute for this transformer, st ri pHTM., which is a boolean value (true/false) to signal if the HTMLStripTransformer should process
the field or not.

The LogTransformer

You can use this transformer to log data to the console or log files. For example:

<entity ...
transf ormer =" LogTr ansf or ner "
| ogTenpl at e="The nane is $\{e.nane\}" | ogLevel ="debug" >

</entity>

Unlike other transformers, the LogTransformer does not apply to any field, so the attributes are applied on the entity itself.

The NumberFormatTransformer

Use this transformer to parse a number from a string, converting it into the specified format, and optionally using a different locale.

Apache Solr Reference Guide 4.6 149

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

NumberFormatTransformer will be applied only to fields with an attribute f or mat St yl e.

This transformer recognizes the following attributes:

Attribute Description

formatStyle The format used for parsing this field. The value of the attribute must be one of (nunber | percent | i nt eger | currency).
This uses the semantics of the Java NumberFormat class.

sourceColName = The column on which the NumberFormat is to be applied. This is attribute is absent. The source column and the target
column are the same.

locale The locale to be used for parsing the strings. If this is absent, the ROOT locale is used. It must be specified as
language-country. For example, en- US.

For example:
<entity nanme="en" pk="id" transforner="NunberFormat Transforner" ...>
<l-- treat this field as UK pounds -->

<field nane="price_uk"
col um="pri ce"
format Styl e="currency”
| ocal e="en-UK" />
</entity>

The RegexTransformer

The regex transformer helps in extracting or manipulating values from fields (from the source) using Regular Expressions. The actual class name
isorg. apache. sol r. handl er. dat ai nport . RegexTr ansf or mer . But as it belongs to the default package the package-name can be
omitted.

The table below describes the attributes recognized by the regex transformer.

Attribute Description

regex The regular expression that is used to match against the column or sourceColName's value(s). If replaceWith is absent, each
regex group is taken as a value and a list of values is returned.

sourceColName = The column on which the regex is to be applied. If not present, then the source and target are identical.
splitBy Used to split a string. It returns a list of values.

groupNames A comma separated list of field column names, used where the regex contains groups and each group is to be saved to a
different field. If some groups are not to be named leave a space between commas.

replaceWith Used along with regex . It is equivalent to the method new St ri ng(<sour ceCol Val >) . repl aceAl | (<regex>,
<repl aceWth>).

Here is an example of configuring the regex transformer:

Apache Solr Reference Guide 4.6 150

<entity name="foo0" transforner="RegexTransfornmer"
query="select full_name , emailids fromfoo"/>
/>
<field colum="full _nanme"/>
<field colum="firstName" regex="M (\w*)\b.*" sourceCol Name="ful | _nane"/>
<field colum="] ast Name" regex="M.*?\b(\w)" sourceCol Name="ful | _nanme"/>

<l-- another way of doing the sanme -->

<field col um="full Name" regex="M (\w)\b(.*)" groupNanmes="first Nane, | ast Name"/ >
<field colum="nmailld" splitBy="," sourceCol Nane="enailids"/>
</entity>

In this example, regex and sourceColName are custom attributes used by the transformer. The transformer reads the field f ul | _nane from the
resultset and transforms it to two new target fields, fi r st Narre and | ast Nare. Even though the query returned only one column, f ul | _nan®, in
the result set, the Solr document gets two extra fields f i r st Nane and | ast Nane which are "derived" fields. These new fields are only created if
the regexp matches.

The emailids field in the table can be a comma-separated value. It ends up producing one or more email IDs, and we expect the mai | | d to be a
multivalued field in Solr.

Note that this transformer can either be used to split a string into tokens based on a splitBy pattern, or to perform a string substitution as per

replaceWith, or it can assign groups within a pattern to a list of groupNames. It decides what it is to do based upon the above attributes spl i t By,
repl aceW t h and gr oupNanes which are looked for in order. This first one found is acted upon and other unrelated attributes are ignored.

The ScriptTransformer

The script transformer allows arbitrary transformer functions to be written in any scripting language supported by Java, such as Javascript, JRuby,
Jython, Groovy, or BeanShell. Javascript is integrated into Java 6; you'll need to integrate other languages yourself.

Each function you write must accept a row variable (which corresponds to a Java Map<Stri ng, Obj ect >, thus permitting get , put, renove
operations). Thus you can modify the value of an existing field or add new fields. The return value of the function is the returned object.

The script is inserted into the DIH configuration file at the top level and is called once for each row.

Here is a simple example.

Apache Solr Reference Guide 4.6 151

<dat aconfi g>

<l-- sinple script to generate a new row, converting a tenperature from Fahrenheit
to Centigrade -->

<script>
<CDATA
function f2c(row) { var tenpf, tenmpc; tenpf = row.get('tenp_f'); if (tenpf !=
nul I') { tempc = (tenpf - 32.0)*5.0/9.0
row. put ('tenp_c', tenp_c);
}

return row,

}

>
</script>
<docunent >

<I-- the function is specified as an entity attribute -->

<entity nanme="el" pk="id" transforner="script:f2c" query="select * fromX"'>

</entity>
</ docunent >
</ dat aConfi g>

The TemplateTransformer

You can use the template transformer to construct or modify a field value, perhaps using the value of other fields. You can insert extra text into the
template.

<entity name="en" pk="id" transforner="Tenpl ateTransfornmer" ...>

<l-- generate a full address fromfields containing the conmponent parts -->
<field colum="full_address"

tenpl ate="$en.\{street\}, $en\{city\}, $en\{zip\}" />

</entity>

Special Commands for the Data Import Handler

You can pass special commands to the DIH by adding any of the variables listed below to any row returned by any component:

Variable Description

$skipDoc Skip the current document; that is, do not add it to Solr. The value can be the string t r ue| f al se.

$skipRow Skip the current row. The document will be added with rows from other entities. The value can be the string
true| fal se

$docBoost Boost the current document. The boost value can be a number or the t oSt r i ng conversion of a number.

$deleteDocByld Delete a document from Solr with this ID. The value has to be the uni queKey value of the document.

$deleteDocByQuery = Delete documents from Solr using this query. The value must be a Solr Query.

Updating Parts of Documents

Once you have indexed the content you need in your Solr index, you will want to start thinking about your strategy for dealing with changes to
those documents. Solr supports two approaches to updating documents that have only partially changed.

Apache Solr Reference Guide 4.6 152

The first is atomic updates. This approach allows changing only one or more fields of a document without having to re-index the entire document.

The second approach is known as optimistic concurrency or optimistic locking. It is a feature of many NoSQL databases, and allows conditional
updating a document based on it's version. This approach includes semantics and rules for how to deal with version matches or mis-matches.

Atomic Updates and Optimistic Concurrency may be used as independent strategies for managing changes to documents, or they may be
combined: you can use optimistic concurrency to conditionally apply an atomic update.

Atomic Updates

Solr supports several modifiers that atomically update values of a document. This allows updating only specific fields, which can help speed
indexing processes in an environment where speed of index additions is critical to the application.

To use atomic updates, add a modifier to the field that needs to be updated. The content can be updated, added to, or incrementally increased if a
number.

Modifier Usage

set Set or replace a particular value, or remove the value if 'null’ is specified as the new value.
add Adds an additional value to a list.
inc Increments a numeric value by a specific amount.

g All original source fields must be stored for field modifiers to work correctly, which is the Solr default.

i}

For example:

{"id":"nmydoc", "f1"{"set":10}, "f2"{"add":20}}

This example results in field f 1 being set to "10", and field f 2 having an additional value of "20" added. All other existing fields from the original
document remain unchanged.

Optimistic Concurrency

Optimistic Concurrency is a feature of Solr that can be used by client applications which update/replace documents to ensure that the document
they are replacing/updating has not been concurrently modified by another client application. This feature works by requiring a _ver si on__ field
on all documents in the index, and comparing that to a _ver si on_ specified as part of the update command. By default, Solr's schema. xm
includes a _ver si on_field, and this field is automatically added to each new document.

In general, using optimistic concurrency involves the following work flow:

1. Aclient reads a document. In Solr, one might retrieve the document with the / get handler to be sure to have the latest version.
2. A client changes the document locally.

3. The client resubmits the changed document to Solr, for example, perhaps with the / updat e handler.

4. If there is a version conflict (HTTP error code 409), the client starts the process over.

When the client resubmits a changed document to Solr, the _ver si on_ can be included with the update to invoke optimistic concurrency control.
Specific semantics are used to define when the document should be updated or when to report a conflict.

® |f the contentin the _ver si on_ field is greater than '1' (i.e., '12345"), then the _ver si on_ in the document must match the _ver si on_
in the index.

® |f the content in the _ver si on_ field is equal to '1', then the document must simply exist. In this case, no version matching occurs, but if
the document does not exist, the updates will be rejected.

® |f the contentin the _ver si on_ field is less than '0' (i.e., -1"), then the document must not exist. In this case, no version matching
occurs, but if the document exists, the updates will be rejected.

® |f the content in the _ver si on_ field is equal to '0', then it doesn't matter if the versions match or if the document exists or not. If it exists,
it will be overwritten; if it does not exist, it will be added.

If the document being updated does not include the _ver si on_field, and atomic updates are not being used, the document will be treated by
normal Solr rules, which is usually to discard it

For more information, please also see Yonik Seeley's presentation on NoSQL features in Solr 4 from Apache Lucene EuroCon 2012.

Document Centric Versioning Constraints

Optimistic Concurrency is extremely powerful, and works very efficiently because it uses an internally assigned, globally unique values for the

Apache Solr Reference Guide 4.6 153

https://www.youtube.com/watch?v=WYVM6Wz-XTw

_versi on_field. However, In some situations users may want to configure their own document specific version field, where the version values
are assigned on a per-document basis by an external system, and have Solr reject updates that attempt to replace a document with an "older"
version. In situations like this the DocBasedVer si onConst r ai nt sProcessor Fact ory can be useful.

The basic usage of DocBasedVer si onConst r ai nt sProcessor Fact ory is to configure itin sol rconfi g. xm as part of the UpdateRequest
ProcessorChain and specify the name of the ver si onFi el d in your schema that should be checked when validating updates:

<processor cl ass="sol r. DocBasedVersi onConst r ai nt sProcessor Fact ory" >
<str name="versionFi el d">my_version_| </str>
</ processor >

Once configured, this update processor will reject (HTTP error code 409) any attempt to update an existing document where the value of the
ny_versi on_| field in the "new" document is not greater then the value of that field in the existing document.

DocBasedVer si onConst r ai nt sProcessor Fact ory supports two additional configuration params which are optional:

® i gnor ed dUpdat es - A boolean option which defaults to f al se. If set to t r ue then instead of rejecting updates where the
ver si onFi el d is too low, the update will be silently ignored (and return a status 200 to the client).

® del et eVer si onPar am- A String parameter that can be specified to indicate that this processor should also inspect Delete By Id
commands. The value of this configuration option should be the name of a request parameter that the processor will now consider
mandatory for all attempts to Delete By Id, and must be be used by clients to specify a value for the ver si onFi el d which is greater
then the existing value of the document to be deleted. When using this request param, any Delete By Id command with a high enough
document version number to succeed will be internally converted into an Add Document command that replaces the existing document
with a new one which is empty except for the Unique Key and ver si onFi el d to keeping a record of the deleted version so future Add
Document commands will fail if their "new" version is not high enough.

Please consult the processor javadocs and test configs for additional information and example usages.

De-Duplication

Preventing duplicate or near duplicate documents from entering an index or tagging documents with a signature/fingerprint for duplicate field
collapsing can be efficiently achieved with a low collision or fuzzy hash algorithm. Solr natively supports de-duplication techniques of this type via
the <Si gnat ur e> class and allows for the easy addition of new hash/signature implementations. A Signature can be implemented several ways:

Method Description
MD5Signature 128 bit hash used for exact duplicate detection.
Lookup3Signature 64 bit hash used for exact duplicate detection, much faster than MD5 and smaller to index

TextProfileSignature = Fuzzy hashing implementation from nutch for near duplicate detection. Its tunable but works best on longer text.

Other, more sophisticated algorithms for fuzzy/near hashing can be added later.

1 Adding in the deduplication process will change the al | owDups setting so that it applies to an update Term (with

si gnat ur eFi el d in this case) rather than the unique field Term. Of course the si gnat ur eFi el d could be the unique field,
but generally you want the unique field to be unique. When a document is added, a signature will automatically be generated
and attached to the document in the specified si gnat ur eFi el d.

Configuration Options

In sol rconfig. xm

The Si gnat ur eUpdat ePr ocessor Fact or y has to be registered in the solrconfig.xml as part of the UpdateRequestProcessorChain:

Apache Solr Reference Guide 4.6 154

https://lucene.apache.org/solr/api/solr-core/org/apache/solr/update/processor/DocBasedVersionConstraintsProcessorFactory.html
http://wiki.apache.org/solr/UpdateRequestProcessor
http://wiki.apache.org/solr/UpdateRequestProcessor
https://lucene.apache.org/solr/api/solr-core/org/apache/solr/update/processor/DocBasedVersionConstraintsProcessorFactory.html
https://svn.apache.org/viewvc/lucene/dev/trunk/solr/core/src/test-files/solr/collection1/conf/solrconfig-externalversionconstraint.xml?view=markup
http://wiki.apache.org/solr/TextProfileSignature
http://wiki.apache.org/solr/UpdateRequestProcessor

<updat eRequest Processor Chai n name="dedupe" >
<processor class="sol r.processor. Si gnat ureUpdat eProcessor Fact ory" >
<bool nane="enabl ed" >t r ue</ bool >
<str name="si gnatureFiel d">i d</str>
<bool nane="overw it eDupes">fal se</bool >
<str nane="fiel ds">nane, features, cat</str>
<str nanme="si gnatured ass">sol r. processor. Lookup3Si gnat ure</str>
</ processor >
</ updat eRequest Pr ocessor Chai n>

Setting Default Description
signatureClass = org.apache.solr.update.processor.Lookup3Signature = A Signature implementation for generating a signature hash.

fields all fields The fields to use to generate the signature hash in a comma separated
list. By default, all fields on the document will be used.

signatureField = signatureField The name of the field used to hold the fingerprint/signature. Be sure the
field is defined in schema.xml.

enabled true Enable/disable deduplication factory processing

In schema. xm

If you are using a separate field for storing the signature you must have it indexed:

<field nane="si gnature" type="string" stored="true" indexed="true"
mul ti Val ued="f al se" />

Be sure to change your update handlers to use the defined chain, i.e.

<request Handl er name="/update" >
<l st name="defaul ts">
<str name="updat e. chai n" >dedupe</str>
</lst>
</ request Handl er >

@ The update processor can also be specified per request with a parameter of updat e. chai n=dedupe.

Detecting Languages During Indexing

Solr can identify languages and map text to language-specific fields during indexing using the | angi d UpdateRequestProcessor. Solr supports
two implementations of this feature:

® Tika's language detection feature: http://tika.apache.org/0.10/detection.html
® LangDetect language detection: http://code.google.com/p/language-detection/

You can see a comparison between the two implementations here: http://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-goog|
es.html. In general, the LangDetect implementation supports more languages with higher performance.

For specific information on each of these language identification implementations, including a list of supported languages for each, see the

relevant project websites. For more information about the | angi d UpdateRequestProcessor, see the Solr wiki: http://wiki.apache.org/solr/Langua
geDetection. For more information about language analysis in Solr, see Language Analysis.

Configuring Language Detection

You can configure the | angi d UpdateRequestProcessor in sol r conf i g. xm . Both implementations take the same parameters, which are
described in the following section. At a minimum, you must specify the fields for language identification and a field for the resulting language code.

Apache Solr Reference Guide 4.6 155

http://tika.apache.org/0.10/detection.html
http://code.google.com/p/language-detection/
http://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-googles.html
http://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-googles.html
http://wiki.apache.org/solr/LanguageDetection
http://wiki.apache.org/solr/LanguageDetection

Configuring Tika Language Detection

Here is an example of a minimal Tika | angi d configuration in sol r confi g. xm :

<pr ocessor

</lst>
</ processor >

cl ass="org. apache. sol r. updat e. processor. Ti kaLanguagel denti fi er Updat ePr ocessor Fact ory" >
<l st name="defaul ts">
<str name="langid.fl">title, subject,text, keywords</str>

<str name="|angi d. | angFi el d" >l anguage_s</str>

Configuring LangDetect Language Detection

Here is an example of a minimal LangDetect | angi d configuration in sol r confi g. xm :

<processor

tory">

</|st>
</ processor >

<l st name="defaul ts">
<str name="langid.fl">title, subject,text, keywords</str>
<str name="l| angi d. | angFi el d" >l anguage_s</str>

cl ass="org. apache. sol r. updat e. processor . LangDet ect Languagel denti fi er Updat ePr ocessor Fac

| angi d Parameters

As previously mentioned, both implementations of the | angi d UpdateRequestProcessor take the same parameters.

Parameter Type
langid Boolean
langid.fl string
langid.langField string
langid.langsField multivalued
string
langid.overwrite Boolean
langid.lcmap string
langid.threshold float
langid.whitelist string

Apache Solr Reference Guide 4.6

Default

true

none

none

none

false

none

0.5

none

Required = Description

no
yes
yes

no

no

false

no

no

Enables and disables language detection.
A comma- or space-delimited list of fields to be processed by | angi d.
Specifies the field for the returned language code.

Specifies the field for a list of returned language codes. If you use
| angi d. map. i ndi vi dual , each detected language will be added to
this field.

Specifies whether the content of the | angFi el d and | angsFi el d fields
will be overwritten if they already contain values.

A space-separated list specifying colon delimited language code
mappings to apply to the detected languages. For example, you might
use this to map Chinese, Japanese, and Korean to a common cj k code,
and map both American and British English to a single en code by using
langi d. | cmap=ja:cjk zh:cjk ko:cjk en_GB:en en_US: en.
This affects both the values put into the | angFi el d and | angsFi el d
fields, as well as the field suffixes when using | angi d. map, unless
overridden by | angi d. nap. | cnap

Specifies a threshold value between 0 and 1 that the language
identification score must reach before | angi d accepts it. With longer text
fields, a high threshold such at 0.8 will give good results. For shorter text
fields, you may need to lower the threshold for language identification,
though you will be risking somewhat lower quality results. We recommend
experimenting with your data to tune your results.

Specifies a list of allowed language identification codes. Use this in
combination with | angi d. map to ensure that you only index documents
into fields that are in your schema.

156

langid.map Boolean false no Enables field name mapping. If true, Solr will map field names for all fields
listedinl angid. fl.

langid.map.fl string none no A comma-separated list of fields for | angi d. map that is different than the
fields specified in | angi d. f I .

langid.map.keepOrig Boolean false no If true, Solr will copy the field during the field name mapping process,
leaving the original field in place.

langid.map.individual Boolean false no If true, Solr will detect and map languages for each field individually.

langid.map.individual.fl = string none no A comma-separated list of fields for use with | angi d. map. i ndi vi dual

that is different than the fields specified in | angi d. f I .

langid.fallbackFields string none no If no language is detected that meets the | angi d. t hr eshol d score, or
if the detected language is not on the | angi d. whi t el i st this field
specifies language codes to be used as fallback values. If no appropriate
fallback languages are found, Solr will use the language code specified in
| angi d. f al | back.

langid.fallback string none no Specifies a language code to use if no language is detected or specified
inl angi d. fal | backFi el ds.

langid.map.lcmap string determined by no A space-separated list specifying colon delimited language code
| angi d. | crmap mappings to use when mapping field names. For example, you might use
this to make Chinese, Japanese, and Korean language fields use a
common * _cj k suffix, and map both American and British English fields
to a single * _en by using | angi d. nap. | cnap=j a: cj k zh:cjk
ko: cj k en_GB:en en_US: en.

langid.map.pattern Java none no By default, fields are mapped as <field>_<language>. To change this
regular pattern, you can specify a Java regular expression in this parameter.
expression

langid.map.replace Java none no By default, fields are mapped as <field>_<language>. To change this
replace pattern, you can specify a Java replace in this parameter.

langid.enforceSchema = Boolean true no If false, the | angi d processor does not validate field names against your

schema. This may be useful if you plan to rename or delete fields later in
the UpdateChain.

Content Streams

When Solr RequestHandlers are accessed using path based URLs, the Sol r Quer yRequest object containing the parameters of the request
may also contain a list of ContentStreams containing bulk data for the request. (The hame SolrQueryRequest is a bit misleading: it is involved in
all requests, regardless of whether it is a query request or an update request.)

Stream Sources

Currently RequestHandlers can get content streams in a variety of ways:

® For multipart file uploads, each file is passed as a stream.

® For POST requests where the content-type is not appl i cat i on/ x- ww\« f or m ur | encoded, the raw POST body is passed as a
stream. The full POST body is parsed as parameters and included in the Solr parameters.

® The contents of parameter st r eam body is passed as a stream.

® |f remote streaming is enabled and URL content is called for during request handling, the contents of each st r eam ur| and
stream fil e parameters are fetched and passed as a stream.

By default, curl sends a cont ent Type="appl i cati on/ x- ww+ f or m ur | encoded" header. If you need to test a SolrContentHeader content
stream, you will need to set the content type with the "-H" flag.

RemoteStreaming

Remote streaming lets you send the contents of a URL as a stream to a given SolrRequestHandler. You could use remote streaming to send a
remote or local file to an update plugin. For security reasons, remote streaming is disabled in the sol rconf i g. xm included in the example
directory.

1. If you enable streaming, be aware that this allows anyone to send a request to any URL or local file. If dump is enabled, it will
allow anyone to view any file on your system.

Apache Solr Reference Guide 4.6 157

<!--Make sure your system has authentication before enabling renote streaning!-->
<request Par sers enabl eRenot eStreamnm ng="true" nul tipart Upl oadLi m t|nKB="2048" />

Debugging Requests

The example sol rconfi g. xm includes a "dump" RequestHandler:

<r equest Handl er nanme="/debug/ dunp" cl ass="sol r. DunpRequest Handl er" />

This handler simply outputs the contents of the SolrQueryRequest using the specified writer type wt . This is a useful tool to help understand what
streams are available to the RequestHandlers.

UIMA Integration

You can integrate the Apache Unstructured Information Management Architecture (UIMA) with Solr. UIMA lets you define custom pipelines of
Analysis Engines that incrementally add metadata to your documents as annotations.

For more information about Solr UIMA integration, see https://wiki.apache.org/solr/SolrUIMA.

Configuring UIMA

The SolrUIMA UpdateRequestProcessor is a custom update request processor that takes documents being indexed, sends them to a UIMA
pipeline, and then returns the documents enriched with the specified metadata. To configure UIMA for Solr, follow these steps:

1. Copysolr-uima-4.x.y.jar (under/solr-4.x.y/dist/)andits libraries (under contri b/ ui ma/ 1 i b) to a Solr libraries directory,
orset<lib/>tagsinsol rconfig.xm appropriately to point to those jar files:

<lib dir="../../contrib/uima/lib" />
<lib dir="../../dist/" regex="solr-uima-\d.*\.jar" />

2. Modify schema. xni , adding your desired metadata fields specifying proper values for type, indexed, stored, and multiValued options.
For example:

<field nane="I| anguage" type="string" indexed="true" stored="true"
requi red="fal se"/>

<field nanme="concept" type="string" indexed="true" stored="true"
mul ti Val ued="true" required="fal se"/>

<field nane="sentence" type="text" indexed="true" stored="true"
mul ti Val ued="true" required="fal se" />

3. Add the following snippet to sol r confi g. xni :

<updat eRequest Pr ocessor Chai n nane="ui ma" >
<processor
cl ass="org. apache. sol r. ui ma. processor . U MAUpdat eRequest Processor Fact ory" >
<l st name="ui maConfi g">

<l st name="runti nePar anet er s" >
<str nanme="keywor d_api key" >VALI D_ALCHEMYAPI _KEY</str >
<str name="concept _api key">VAL|I D_ALCHEMYAPI _KEY</ str >
<str name="|ang_api key" >VALI D_ALCHEMYAPI _KEY</str>
<str name="cat _api key" >VALI D_ALCHEMYAPI _KEY</ str >
<str nanme="entities_api key">VALI D_ALCHEMYAPI _KEY</str>
<str name="oc_|icensel D'>VALI D_OPENCALAI S_KEY</ str>

</lst>

Apache Solr Reference Guide 4.6 158

https://uima.apache.org/
https://wiki.apache.org/solr/SolrUIMA

<str
name="anal ysi sEngi ne" >/ or g/ apache/ ui ma/ desc/ Overri di ngPar ansExt Ser vi cesAE. xm </ s
tr>
<I-- Set to true if you want to continue indexing even if text
processing fails.
Default is false. That is, Solr throws RuntinmeException and

never indexed docunments entirely in your session. -->
<bool nane="ignoreErrors">true</bool >
<!-- This is optional. It is used for |ogging when text processing

fails.
If logField is not specified, uniqueKey will be used as | ogField.
<str name="| ogFi el d">i d</str>
-->
<l st name="anal yzeFi el ds" >
<bool name="nerge" >f al se</bool >
<arr name="fiel ds">
<str>text</str>
</arr>
</lst>
<l st name="fi el dvappi ngs" >
<l st name="type">
<str nanme="nane">org. apache. ui na. al cheny. ts. concept. Concept FS</str>
<l st name="mappi ng" >
<str name="feature">text</str>
<str name="fiel d">concept</str>
</lst>
</lst>
<l st name="type">
<str
name="nane" >or g. apache. ui na. al cheny. ts. | anguage. LanguageFS</ str >
<l st name="mappi ng" >
<str name="feature">l anguage</str>
<str nanme="fiel d">| anguage</str>
</lst>
</lst>
<l st name="type">
<str name="nane" >or g. apache. ui ma. Sent enceAnnot ati on</ str>
<l st name="nappi ng" >
<str name="feature">coveredText</str>
<str nanme="fiel d">sentence</str>
</lst>
</lst>
</lst>
</lst>
</ processor >
<processor class="solr.LogUpdat eProcessorFactory" />

Apache Solr Reference Guide 4.6

159

<processor class="sol r. RunUpdat eProcessor Factory" />
</ updat eRequest Pr ocessor Chai n>

VALI D_ALCHEMYAPI _KEY is your AlchemyAPI Access Key. You need to register an AlchemyAPI Access key to use
AlchemyAPI services: http://www.alchemyapi.com/api/register.html.

=

VAL| D_OPENCALAI S_KEY is your Calais Service Key. You need to register a Calais Service key to use the Calais
services: http://www.opencalais.com/apikey.

anal ysi sengi ne must contain an AE descriptor inside the specified path in the classpath.

anal yzeFi el ds must contain the input fields that need to be analyzed by UIMA. If mer ge=t r ue then their content will
be merged and analyzed only once.

Field mapping describes which features of which types should go in a field.

4. Inyour sol rconfi g. xm replace the existing default UpdateRequestHandler or create a new UpdateRequestHandler:

<r equest Handl er nane="/update" class="sol r. Xm Updat eRequest Handl er" >
<l st name="defaul ts">
<str name="updat e. processor">ui ma</str>
</lst>
</ request Handl er >

Once you are done with the configuration your documents will be automatically enriched with the specified fields when you index them.

Apache Solr Reference Guide 4.6 160

http://www.alchemyapi.com/api/register.html
http://www.opencalais.com/apikey

Searching

This section describes how Solr works with search requests. It covers the following topics:
® Qverview of Searching in Solr: An introduction to searching with Solr.
® Velocity Search Ul: A sample search Ul in the example configuration using the VelocityResponseWriter.
® Relevance: Conceptual information about understanding relevance in search results.

® Query Syntax and Parsing: A brief conceptual overview of query syntax and parsing. It also contains the following sub-sections:
Common Query Parameters: No matter the query parser, there are several parameters that are common to all of them.
The Standard Query Parser: Detailed information about the standard Lucene query parser.

The DisMax Query Parser: Detailed information about Solr's DisMax query parser.

The Extended DisMax Query Parser: Detailed information about Solr's Extended DisMax (eDisMax) Query Parser.
Local Parameters in Queries: How to add local arguments to queries.

Other Parsers: More parsers designed for use in specific situations.

® Highlighting: Detailed information about Solr's highlighting utilities.

® MoreLikeThis: Detailed information about Solr's similar results query component.

® Faceting: Detailed information about categorizing search results based on indexed terms.

® Result Grouping: Detailed information about grouping results based on common field values.

® Result Clustering: Detailed information about grouping search results based on cluster analysis applied to text fields. A bit like
"unsupervised" faceting.

® Spell Checking: Detailed information about Solr's spelling checker.

® Suggester: Detailed information about Solr's powerful autosuggest component.

® Function Queries: Detailed information about parameters for generating relevancy scores using values from one or more numeric fields.

® Spatial Search: How to use Solr's spatial search capabilities.

® The Terms Component: Detailed information about accessing indexed terms and the documents that include them.

® The Term Vector Component: How to get term information about specific documents.

® The Stats Component: How to return information from numeric fields within a document set.

® The Query Elevation Component: How to force documents to the top of the results for certain queries.

® Response Writers: Detailed information about configuring and using Solr's response writers.

® Near Real Time Searching: How to include documents in search results nearly immediately after they are indexed.

® RealTime Get: How to get the latest version of a document without opening a searcher.

Overview of Searching in Solr

Solr offers a rich, flexible set of features for search. To understand the extent of this flexibility, it's helpful to begin with an overview of the steps
and components involved in a Solr search.

When a user runs a search in Solr, the search query is processed by a request handler. A request handler is a Solr plug-in that defines the logic
to be used when Solr processes a request. Solr supports a variety of request handlers. Some are designed for processing search queries, while
others manage tasks such as index replication.

Search applications select a particular request handler by default. In addition, applications can be configured to allow users to override the default
selection in preference of a different request handler.

To process a search query, a request handler calls a query parser, which interprets the terms and parameters of a query. Different query parsers
support different syntax. The default query parser is the DisMax query parser. Solr also includes an earlier "standard" (Lucene) query parser, and
an Extended DisMax (eDisMax) query parser. The standard query parser's syntax allows for greater precision in searches, but the DisMax query
parser is much more tolerant of errors. The DisMax query parser is designed to provide an experience similar to that of popular search engines
such as Google, which rarely display syntax errors to users. The Extended DisMax query parser is an improved version of DisMax that handles
the full Lucene query syntax while still tolerating syntax errors. It also includes several additional features.

Apache Solr Reference Guide 4.6 161

In addition, there are common query parameters that are accepted by all query parsers.
Input to a query parser can include:

® search strings---that is, terms to search for in the index

® parameters for fine-tuning the query by increasing the importance of particular strings or fields, by applying Boolean logic among the
search terms, or by excluding content from the search results

® parameters for controlling the presentation of the query response, such as specifying the order in which results are to be presented or
limiting the response to particular fields of the search application's schema.

Search parameters may also specify a query filter. As part of a search response, a query filter runs a query against the entire index and caches
the results. Because Solr allocates a separate cache for filter queries, the strategic use of filter queries can improve search performance. (Despite
their similar names, query filters are not related to analysis filters. Query filters perform queries at search time against data already in the index,
while analysis filters, such as Tokenizers, parse content for indexing, following specified rules).

A search query can request that certain terms be highlighted in the search response; that is, the selected terms will be displayed in colored boxes
so that they "jump out" on the screen of search results. Highlighting can make it easier to find relevant passages in long documents returned in a
search. Solr supports multi-term highlighting. Solr includes a rich set of search parameters for controlling how terms are highlighted.

Search responses can also be configured to include snippets (document excerpts) featuring highlighted text. Popular search engines such as
Google and Yahoo! return snippets in their search results: 3-4 lines of text offering a description of a search result.

To help users zero in on the content they're looking for, Solr supports two special ways of grouping search results to aid further exploration:
faceting and clustering.

Faceting is the arrangement of search results into categories (which are based on indexed terms). Within each category, Solr reports on the
number of hits for relevant term, which is called a facet constraint. Faceting makes it easy for users to explore search results on sites such as
movie sites and product review sites, where there are many categories and many items within a category.

The image below shows an example of faceting from the CNET Web site, which was the first site to use Solr.

Digital cameras The facet count or

Manufacturer is a constraint count shows
facet a way of how many results
categorizing the Refine your results match each value
results
Mnnulaclurar Flemlullun Zoom range More

& magapbieis (3 ® 2K fo A (1) ® LCD size

Canon, Sony, and —*

snd up & B e 12X (1) ® Image slablzer

Nikon are , i e
constraints, or 5 Okous 8 8 mace format
facet values o Poniex (3) S
a6 &l ¥
you selected: | 34003500 |) LR Q| removest D - Regular search results list l
The breadcrumb |~ e
trail shows what 17 results ﬁf K : ex
constrainis have
all‘Ead'gr been Show 10 | resulls per page Sort by Review dale | COMPARE SELECTED
apphied and allows -
E,E their remaval ; Canon EOS Rebel X5 (silver, with 18-55mm $453 to 5693
e e |E-I'|5' at 156 stores D

Faceting makes use of fields defined when the search applications were indexed. In the example above, these fields include categories of
information that are useful for describing digital cameras: manufacturer, resolution, and zoom range.

Clustering groups search results by similarities discovered when a search is executed, rather than when content is indexed. The results of
clustering often lack the neat hierarchical organization found in faceted search results, but clustering can be useful nonetheless. It can reveal
unexpected commonalities among search results, and it can help users rule out content that isn't pertinent to what they're really searching for.

Solr also supports a feature called MoreLikeThis, which enables users to submit new queries that focus on particular terms returned in an earlier
query. MoreLikeThis queries can make use of faceting or clustering to provide additional aid to users.

A Solr component called a response writer manages the final presentation of the query response. Solr includes a variety of response writers,
including an XML Response Writer and a JSON Response Writer.

The diagram below summarizes some key elements of the search process.

Apache Solr Reference Guide 4.6 162

qt: selects a RequestHandler for a query using /select (by default, the DisMax RequestHandler is used)

Request

defType: selacts a query parser for the query
Handler {by default, uses whatever has been configured
for the RequestHandler)

RESDOHSE
Writer

Query

Parser gf: selects which fields to query
in the index (by default, all

fields are queriad)

whi: selects aresponss writer for formatting
tha query responss

fy: filters the query by applying an additional query
to the initial query's results: caches the results

Index

rows: spacifiesthe

number of Fows start: specifies an offset
to be displayed {by default &) into
at one Hme the query results where

the returned response
should begin

Velocity Search Ul

Solr includes a sample search Ul based on the VelocityResponseWriter (also known as Solritas) that demonstrates several useful features, such
as searching, faceting, highlighting, autocomplete, and geospatial searching.

You can access the Velocity sample Search Ul here: htt p: / /1 ocal host: 8983/ sol r/ br owse

Apache Solr Reference Guide 4.6 163

http://localhost:8983/solr/browse

Solr Admin

']/

L\

Solr

Examples: Simple Spalia

Find : (Submit Query) (Reset)

WO ey) N =)

oBoost by Price

Field Facets 17 results found in 98 ms Page 1 of 2
cat Test with some GB18030 More Like This
Price: $0.00
Features: No accents here i%E—TI0EE This is a feature (translated) ;X433 ERHLF This document is very shiny (translated)
In Stock: true

Samsung SpinPoint P120 SP2514N - hard drive - 250 GB - ATA-133 More Like This

Frice: $92.00 ‘
Features: 7200RPM, 8MB cache, IDE Ultra ATA-133 NoiseGuard, SilentSeek technology, Fluid Dynamic Bearing (FDB)
mator Cigeile

In Stock: true

rin

Maxtor DiamondMax 11 - hard drive - 500 GB - SATA-300 More Like This &

>
Price: $350.00 2 kﬂ
z
Features: SATA 3.0Gb/s, NCQ 8.5ms seek 16MB cache i
In Stock: true : -
Belkin Mobile Power Cord for iPod w/ Dock More Like This e

3
Price: $19.95 B ‘h
7 falo

Features: car power adapter, white

In Stock: false

iPod & iPod Mini USB 2.0 Cable More Like This

N

ommim St

Price: $11.50 Geory BYC $
© San

Mo © r Features: car power adapter for Pod. white

The Velocity Search Ul

For more information about the Velocity Response Writer, see the Response Writer page.

Relevance

Relevance is the degree to which a query response satisfies a user who is searching for information.

The relevance of a query response depends on the context in which the query was performed. A single search application may be used in
different contexts by users with different needs and expectations. For example, a search engine of climate data might be used by a university
researcher studying long-term climate trends, a farmer interested in calculating the likely date of the last frost of spring, a civil engineer interested
in rainfall patterns and the frequency of floods, and a college student planning a vacation to a region and wondering what to pack. Because the
motivations of these users vary, the relevance of any particular response to a query will vary as well.

How comprehensive should query responses be? Like relevance in general, the answer to this question depends on the context of a search. The
cost of not finding a particular document in response to a query is high in some contexts, such as a legal e-discovery search in response to a
subpoena, and quite low in others, such as a search for a cake recipe on a Web site with dozens or hundreds of cake recipes. When configuring
Solr, you should weigh comprehensiveness against other factors such as timeliness and ease-of-use.

The e-discovery and recipe examples demonstrate the importance of two concepts related to relevance:

® Precision is the percentage of documents in the returned results that are relevant.
® Recall is the percentage of relevant results returned out of all relevant results in the system. Obtaining perfect recall is trivial: simply
return every document in the collection for every query.

Returning to the examples above, it's important for an e-discovery search application to have 100% recall returning all the documents that are
relevant to a subpoena. It's far less important that a recipe application offer this degree of precision, however. In some cases, returning too many
results in casual contexts could overwhelm users. In some contexts, returning fewer results that have a higher likelihood of relevance may be the
best approach.

Using the concepts of precision and recall, it's possible to quantify relevance across users and queries for a collection of documents. A perfect
system would have 100% precision and 100% recall for every user and every query. In other words, it would retrieve all the relevant documents
and nothing else. In practical terms, when talking about precision and recall in real systems, it is common to focus on precision and recall at a
certain number of results, the most common (and useful) being ten results.

Apache Solr Reference Guide 4.6 164

Through faceting, query filters, and other search components, a Solr application can be configured with the flexibility to help users fine-tune their
searches in order to return the most relevant results for users. That is, Solr can be configured to balance precision and recall to meet the needs of
a particular user community.

The configuration of a Solr application should take into account:

® the needs of the application's various users (which can include ease of use and speed of response, in addition to strictly informational
needs)

® the categories that are meaningful to these users in their various contexts (e.g., dates, product categories, or regions)

® any inherent relevance of documents (e.g., it might make sense to ensure that an official product description or FAQ is always returned
near the top of the search results)

® whether or not the age of documents matters significantly (in some contexts, the most recent documents might always be the most
important)

Keeping all these factors in mind, it's often helpful in the planning stages of a Solr deployment to sketch out the types of responses you think the
search application should return for sample queries. Once the application is up and running, you can employ a series of testing methodologies,
such as focus groups, in-house testing, TREC tests and A/B testing to fine tune the configuration of the application to best meet the needs of its
users.

For more information about relevance, see Grant Ingersoll's tech article Debugging Search Application Relevance Issues which is available on
SearchHub.org.

Query Syntax and Parsing

Solr supports several query parsers, offering search application designers great flexibility in controlling how queries are parsed.

This section explains how to specify the query parser to be used. It also describes the syntax and features supported by the main query parsers
included with Solr and describes some other parsers that may be useful for particular situations. There are some query parameters common to all
Solr parsers; these are discussed in the section Common Query Parameters.

The parsers discussed in this Guide are:

The Standard Query Parser

The DisMax Query Parser

The Extended DisMax Query Parser

[]
[]
[]
® Other Parsers

The query parser plugins are all subclasses of http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/search/QParserPlugin.html. If you
have custom parsing needs, you may want to extend that class to create your own query parser.

For more detailed information about the many query parsers available in Solr, see https://wiki.apache.org/solr/SolrQuerySyntax.

Common Query Parameters

The table below summarizes Solr's common query parameters, which are supported by the Standard, DisMax, and eDisMax Request Handlers.

Parameter Description

defType Selects the query parser to be used to process the query.

sort Sorts the response to a query in either ascending or descending order based on the response’s score or another specified
characteristic.

start Specifies an offset (by default, 0) into the responses at which Solr should begin displaying content.

rows Controls how many rows of responses are displayed at a time (default value: 10)

fq Applies a filter query to the search results.

fl With version 3.6, Solr limited the query's responses to a listed set of fields. With version 4.0, this parameter returns only the
score.

debug Request additional debugging information in the response. Specifying the debug=t i mi ng parameter returns just the timing

information; specifying the debug=r esul t s parameter returns "explain" information for each of the documents returned;
specifying the debug=query par anet er returns all of the debug information.

explainOther = Allows clients to specify a Lucene query to identify a set of documents. If non-blank, the explain info of each document which
matches this query, relative to the main query (specified by the q parameter) will be returned along with the rest of the
debugging information.

timeAllowed = Defines the time allowed for the query to be processed. If the time elapses before the query response is complete, partial
information may be returned.

Apache Solr Reference Guide 4.6 165

http://trec.nist.gov
http://searchhub.org/2009/09/02/debugging-search-application-relevance-issues/
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/search/QParserPlugin.html
https://wiki.apache.org/solr/SolrQuerySyntax

omitHeader = Excludes the header from the returned results, if set to true. The header contains information about the request, such as the
time the request took to complete. The default is false.

wit Specifies the Response Writer to be used to format the query response.

cache=false = By default, Solr caches the results of all queries and filter queries. Set cache=f al se to disable caching of the results of a
query.

The following sections describe these parameters in detail.

The def Type Parameter

The defType parameter selects the query parser that Solr should use to process the request. For example:
def Type=di snax

In Solr 1.3 and later, the query parser is set to dismax by default.

The sort Parameter

The sort parameter arranges search results in either ascending (asc) or descending (desc) order. The parameter can be used with either
numerical or alphabetical content. The directions can be entered in either all lowercase or all uppercase letters (i.e., both asc or ASC).

Solr can sort query responses according to document scores or the value of any indexed field with a single value (that is, any field whose
attributes in schenma. xm include mul ti Val ued="f al se" and i ndexed="t r ue"), provided that:

¢ the field is non-tokenized (that is, the field has no analyzer and its contents have been parsed into tokens, which would make the sorting
inconsistent), or

® the field uses an analyzer (such as the KeywordTokenizer) that produces only a single term.

If you want to be able to sort on a field whose contents you want to tokenize to facilitate searching, use the <copyFi el d> directive in the
schema. xmi file to clone the field. Then search on the field and sort on its clone.

The table explains how Solr responds to various settings of the sort parameter.

Example Result

If the sort parameter is omitted, sorting is performed as though the parameter were set to score desc.
score desc Sorts in descending order from the highest score to the lowest score.
price asc Sorts in ascending order of the price field

inStock desc, price = Sorts by the contents of the i nSt ock field in descending order, then within those results sorts in ascending order by the
asc contents of the price field.

Regarding the sort parameter's arguments:

® A sort ordering must include a field name (or scor e as a pseudo field), followed by whitespace (escaped as + or %20 in URL strings),
followed by a sort direction (asc or desc).

® Multiple sort orderings can be separated by a comma, using this syntax: sort =<fi el d name>+<di rection>, <fiel d
name>+<di rection>], ...

The st art Parameter
When specified, the st art parameter specifies an offset into a query's result set and instructs Solr to begin displaying results from this offset.
The default value is "0". In other words, by default, Solr returns results without an offset, beginning where the results themselves begin.

Setting the st art parameter to some other number, such as 3, causes Solr to skip over the preceding records and start at the document
identified by the offset.

You can use the st art parameter this way for paging. For example, if the r ows parameter is set to 10, you could display three successive pages
of results by setting start to 0, then re-issuing the same query and setting start to 10, then issuing the query again and setting start to 20.

The r ows Parameter

You can use the rows parameter to paginate results from a query. The parameter specifies the maximum number of documents from the
complete result set that Solr should return to the client at one time.

Apache Solr Reference Guide 4.6 166

The default value is 10. That is, by default, Solr returns 10 documents at a time in response to a query.

The f g (Filter Query) Parameter

The f g parameter defines a query that can be used to restrict the superset of documents that can be returned, without influencing score. It can be
very useful for speeding up complex queries, since the queries specified with f q are cached independently of the main query. When a later query
uses the same filter, there's a cache hit, and filter results are returned quickly from the cache.

When using the f g parameter, keep in mind the following:

® The f g parameter can be specified multiple times in a query. Documents will only be included in the result if they are in the intersection of
the document sets resulting from each instance of the parameter. In the example below, only documents which have a popularity greater
then 10 and have a section of O will match.

fg=popularity:[10 TO *] & g=section: 0

® Filter queries can involve complicated Boolean queries. The above example could also be written as a single f g with two mandatory
clauses like so:

fg=+popul arity:[10 TO *] +section: 0

® The document sets from each filter query are cached independently. Thus, concerning the previous examples: use a single f g containing
two mandatory clauses if those clauses appear together often, and use two separate f q parameters if they are relatively independent.
(To learn about tuning cache sizes and making sure a filter cache actually exists, see The Well-Configured Solr Instance.)

As with all parameters: special characters in an URL need to be properly escaped and encoded as hex values. Online tools are available
to help you with URL-encoding. For example: http://meyerweb.com/eric/tools/dencoder/.

The f1 (Field List) Parameter

The f | parameter limits the information included in a query response to a specified list of fields. The fields need to have been indexed as stored
for this parameter to work correctly.

The field list can be specified as a space-separated or comma-separated list of field names. The string "score" can be used to indicate that the
score of each document for the particular query should be returned as a field. The wildcard character "*" selects all the stored fields in a
document. You can also add psuedo-fields, functions and transformers to the field list request.

This table shows some basic examples of how to use f | :

Field List Result
id name price | Return only the id, name, and price fields.
id,name,price | Return only the id, name, and price fields.

id name, price ' Return only the id, name, and price fields.

id score Return the id field and the score.
* Return all the fields in each document. This is the default value of the fl parameter.
* score Return all the fields in each document, along with each field's score.

Document Transformers

Transformers modify fields returned with the query response. Transformers must first be configured in sol r confi g. xm . The sample
sol rconfi g. xm has a few examples commented out which could be enabled, but others could be added. Then the transformers could be

added to the query request and the response will be modified accordingly.

For example, if you have enabled a transformer called "elevated”, you could mark all documents that have been elevated with the
QueryElevationComponent. One way to do that is to make this entry in sol r confi g. xm :

<t ransformer nanme="el evat ed"
cl ass="org. apache. sol r.response. transform Edi t ori al Mar ker Factory" />

Apache Solr Reference Guide 4.6 167

http://meyerweb.com/eric/tools/dencoder/

Then, you would include [el evat ed] in the part of your request where you define the fields to return:

fl=id,title,[el evated]

Other common examples are to add "explain” information, add a constant "value" to all documents, or add the "shard" the document has been
indexed on. For more information about transformers, see also http://wiki.apache.org/solr/DocTransformers.

Field Name Aliases

You can change the name a field is returned with by passing a parameter of f i el dNane: di spl ayNane. This will change the name of the field in
the response to the di spl ayNane. For example:

fl=id, price:sale_price

The debug Parameter

In Solr 4, requesting debugging information with results has been simplified from a suite of related parameters to a single parameter that takes
format information as arguments. The parameter is now simply debug, with the following arguments:

® debug=t r ue: return debug information about the query only.

® debug=query: return debug information about the query only.

® debug=ti m ng: return debug information about how long the query took to process.

® debug=resul t s: return debug information about the results (also known as "explain")

The default behavior is not to include debugging information.

The expl ai nQt her Parameter

The expl ai nQt her parameter specifies a Lucene query in order to identify a set of documents. If this parameter is included and is set to a
non-blank value, the query will return debugging information, along with the "explain info" of each document that matches the Lucene query,
relative to the main query (which is specified by the q parameter). For example:

g=supervil | i ans&lebugQuer y=on&expl ai nQ her =i d: j ugger naut

The query above allows you to examine the scoring explain info of the top matching documents, compare it to the explain info for documents
matching i d: j ugger naut , and determine why the rankings are not as you expect.

The default value of this parameter is blank, which causes no extra "explain info" to be returned.
The ti neAl | owed Parameter

This parameter specifies the amount of time, in milliseconds, allowed for a search to complete. If this time expires before the search is complete,
any partial results will be returned.

The om t Header Parameter

This parameter may be set to either true or false.

If set to true, this parameter excludes the header from the returned results. The header contains information about the request, such as the time it
took to complete. The default value for this parameter is false.

The wt Parameter

The wt parameter selects the Response Writer that Solr should use to format the query's response. For detailed descriptions of Response
Writers, see Response Writers.

The cache=false Parameter

Solr caches the results of all queries and filter queries by default. To disable result caching, set the cache=f al se parameter.

You can also use the cost option to control the order in which non-cached filter queries are evaluated. This allows you to order less expensive
non-cached filters before expensive non-cached filters.

For very high cost filters, if cache=f al se and cost >=100 and the query implements the Post Fi | t er interface, a Collector will be requested

Apache Solr Reference Guide 4.6 168

http://wiki.apache.org/solr/DocTransformers

from that query and used to filter documents after they have matched the main query and all other filter queries. There can be multiple post filters;
they are also ordered by cost.

For example:

/1 normal function range query used as a filter, all matching docunents generated up
front and cached
fg={!frange | =10 u=100}mul (popul arity, price)

/1 function range query run in parallel with the main query like a traditional |ucene
filter
fg={!frange | =10 u=100 cache=fal se} mul (popul arity, price)

/1 function range query checked after each docunent that already nmatches the query and
all other filters.

Good for really expensive function queries.
fg={!frange | =10 u=100 cache=fal se cost=100}nul (popul arity, price)

The Standard Query Parser

Before Solr 1.3, the Standard Request Handler called the standard query parser as the default query parser. In versions since Solr 1.3, the
Standard Request Handler calls the DisMax query parser as the default query parser. You can configure Solr to call the standard query parser
instead, if you like.

The advantage of the standard query parser is that it enables users to specify very precise queries. The disadvantage is that it is less tolerant of
syntax errors than the DisMax query parser. The DisMax query parser is designed to throw as few errors as possible.

Topics covered in this section:

Standard Query Parser Parameters

The Standard Query Parser's Response

Specifying Terms for the Standard Query Parser

Specifying Fields in a Query to the Standard Query Parser

Boolean Operators Supported by the Standard Query Parser

Grouping Terms to Form Sub-Queries

Differences between Lucene Query Parser and the Solr Standard Query Parser
Related Topics

Standard Query Parser Parameters

In addition to the Common Query Parameters, Faceting Parameters, Highlighting Parameters, and MoreLikeThis Parameters, the standard query
parser supports the parameters described in the table below.

Parameter Description
q Defines a query using standard query syntax. This parameter is mandatory.

g.op Specifies the default operator for query expressions, overriding the default operator specified in the schema. xm file. Possible
values are "AND" or "OR".

df Specifies a default field, overriding the definition of a default field in the schema. xni file.
Default parameter values are specified in sol r confi g. xm , or overridden by query-time values in the request.

The Standard Query Parser's Response

By default, the response from the standard query parser contains one <r esul t > block, which is unnamed. If the debug parameter is used, then
an additional <I st > block will be returned, using the name "debug". This will contain useful debugging info, including the original query string, the
parsed query string, and explain info for each document in the <result> block. If the expl ai nQt her parameter is also used, then additional
explain info will be provided for all the documents matching that query.

Sample Responses

This section presents examples of responses from the standard query parser.

Apache Solr Reference Guide 4.6 169

The URL below submits a simple query and requests the XML Response Writer to use indentation to make the XML response more readable.
http://yourhost.tld: 9999/ sol r/sel ect ?2q=i d: SP2514N&ver si on=2. 1& ndent =1

Results:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<r esponse>
<r esponseHeader ><st at us>0</ st at us><QTi ne>1</ QTi ne></r esponseHeader >
<result nunfFound="1" start="0">
<doc>
<arr nanme="cat"><str>el ectroni cs</str><str>hard drive</str></arr>
<arr nanme="features"><str>7200RPM 8MB cache, IDE Utra ATA-133</str>
<str>Noi seCuard, SilentSeek technol ogy, Fluid Dynam c Bearing (FDB)
not or </ str></arr>
<str nanme="id">SP2514N</str>
<bool name="i nSt ock">true</bool >
<str name="nmanu">Sansung El ectronics Co. Ltd.</str>
<str name="nane">Samsung Spi nPoi nt P120 SP2514N - hard drive - 250 GB -
ATA- 133</str>
<int name="popul arity">6</int>
<fl oat nane="price">92. 0</fl oat >
<str nanme="sku">SP2514N</str>
</ doc>
</result>
</ response>

Here's an example of a query with a limited field list.

http://yourhost.tld: 9999/ sol r/ sel ect ?2q=i d: SP2514N&ver si on=2. 1& ndent =1&f | =i d+nane

Results:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<r esponse>
<r esponseHeader ><st at us>0</ st at us><QTi ne>2</ QTi ne></r esponseHeader >
<result nunfFound="1" start="0">
<doc>
<str nanme="id">SP2514N</ st r>
<str nanme="nane">Sansung Spi nPoi nt P120 SP2514N - hard drive - 250 GB -
ATA-133</str>
</ doc>
</result>
</ response>

Specifying Terms for the Standard Query Parser

A query to the standard query parser is broken up into terms and operators. There are two types of terms: single terms and phrases.

® A single term is a single word such as "test" or "hello"
® A phrase is a group of words surrounded by double quotes such as "hello dolly"

Multiple terms can be combined together with Boolean operators to form more complex queries (as described below).

1, Itisimportant that the analyzer used for queries parses terms and phrases in a way that is consistent with the way the analyzer
used for indexing parses terms and phrases; otherwise, searches may produce unexpected results.

Term Modifiers

Apache Solr Reference Guide 4.6 170

http://yourhost.tld:9999/solr/select?q=id:SP2514N&version=2.1&indent=1

Solr supports a variety of term modifiers that add flexibility or precision, as needed, to searches. These modifiers include wildcard characters,
characters for making a search "fuzzy" or more general, and so on. The sections below describe these modifiers in detail.

Wildcard Searches

Solr's standard query parser supports single and multiple character wildcard searches within single terms. Wildcard characters can be applied to
single terms, but not to search phrases.

Wildcard Search Type Special Example
Character
Single character (matches a single character) ? The search string t e?t would match both test and text.
Multiple characters (matches zero or more sequential * The wildcard search:
characters)
tes*

would match test, testing, and tester.

You can also use wildcard characters in the middle of a term. For
example:

text
would match test and text.
*est

would match pest and test.

!, Asof Solr 1.4, you can use a * or ? symbol as the first character of a search with the standard query parser.

Fuzzy Searches

Solr's standard query parser supports fuzzy searches based on the Levenshtein Distance or Edit Distance algorithm. Fuzzy searches discover
terms that are similar to a specified term without necessarily being an exact match. To perform a fuzzy search, use the tilde ~ symbol at the end
of a single-word term. For example, to search for a term similar in spelling to "roam," use the fuzzy search:

roam-

This search will match terms like foam and roams. It will also match the word "roam" itself.

An optional, additional parameter specifies the degree of similarity required for a match in a fuzzy search. The value must be between 0 and 1.
When set closer to 1, the optional parameter causes only terms with a higher similarity to be matched. For example, the search below requires a
high degree of similarity to the term "roam" in order for Solr to return a match:

roam-0. 8

If this numerical parameter is omitted, Lucene performs the search as though the parameter were set to 0.5. The sample query above is not very

scalable. Upon parsing this query will check the quasi-edit distance for every term in the index. As a result, this query is practical for only very
small indexes.

r. In many cases, stemming (reducing terms to a common stem) can produce similar effects to fuzzy searches and wildcard
searches.

Proximity Searches

A proximity search looks for terms that are within a specific distance from one another.

To perform a proximity search, add the tilde character ~ and a numeric value to the end of a search phrase. For example, to search for a "apache"
and "jakarta" within 10 words of each other in a document, use the search:

"jakarta apache"~10
The distance referred to here is the number of term movements needed to match the specified phrase. In the example above, if "apache" and

"jakarta" were 10 spaces apart in a field, but "apache" appeared before "jakarta", more than 10 term movements would be required to move the
terms together and position "apache" to the right of “jakarta" with a space in between.

Apache Solr Reference Guide 4.6 171

Range Searches

A range search specifies a range of values for a field (a range with an upper bound and a lower bound). The query matches documents whose
values for the specified field or fields fall within the range. Range queries can be inclusive or exclusive of the upper and lower bounds. Sorting is
done lexicographically, except on numeric fields. For example, the range query below matches all documents whose nod_dat e field has a value
between 20020101 and 20030101, inclusive.
nod_dat e: [20020101 TO 20030101]
Range queries are not limited to date fields or even numerical fields. You could also use range queries with non-date fields:
title:{Aida TO Carnen}
This will find all documents whose titles are between Aida and Carmen, but not including Aida and Carmen.
The brackets around a query determine its inclusiveness.

® Square brackets [] denote an inclusive range query that matches values including the upper and lower bound.

® Curly brackets { } denote an exclusive range query that matches values between the upper and lower bounds, but excluding the upper
and lower bounds themselves.

Boosting a Term with »

Lucene/Solr provides the relevance level of matching documents based on the terms found. To boost a term use the caret symbol ~ with a boost
factor (a number) at the end of the term you are searching. The higher the boost factor, the more relevant the term will be.

Boosting allows you to control the relevance of a document by boosting its term. For example, if you are searching for

"jakarta apache" and you want the term "jakarta" to be more relevant, you can boost it by adding the ~ symbol along with the boost factor
immediately after the term. For example, you could type:

j akarta”4 apache
This will make documents with the term jakarta appear more relevant. You can also boost Phrase Terms as in the example:
"jakarta apache"”4 "Apache Lucene"

By default, the boost factor is 1. Although the boost factor must be positive, it can be less than 1 (for example, it could be 0.2).

Specifying Fields in a Query to the Standard Query Parser

Data indexed in Solr is organized in fields, which are defined in the Solr schema. xni file. Searches can take advantage of fields to add precision
to queries. For example, you can search for a term only in a specific field, such as a title field.

The schema. xml file defines one field as a default field. If you do not specify a field in a query, Solr searches only the default field. Alternatively,
you can specify a different field or a combination of fields in a query.

To specify a field, type the field name followed by a colon ":" and then the term you are searching for within the field.

For example, suppose an index contains two fields, title and text,and that text is the default field. If you want to find a document called "The Right
Way" which contains the text "don't go this way," you could include either of the following terms in your search query:

title:"The R ght Way" AND text:go
title:"Do it right" AND go
Since text is the default field, the field indicator is not required; hence the second query above omits it.

The field is only valid for the term that it directly precedes, so the query titl e: Do it ri ght will find only "Do" in the title field. It will find "it" and
"right" in the default field (in this case the text field).

Boolean Operators Supported by the Standard Query Parser

Boolean operators allow you to apply Boolean logic to queries, requiring the presence or absence of specific terms or conditions in fields in order
to match documents. The table below summarizes the Boolean operators supported by the standard query parser.

Boolean = Alternative Description
Operator Symbol

AND && Requires both terms on either side of the Boolean operator to be present for a match.

NOT ! Requires that the following term not be present.

Apache Solr Reference Guide 4.6 172

OR Il Requires that either term (or both terms) be present for a match.
+ Requires that the following term be present.
- Prohibits the following term (that is, matches on fields or documents that do not include that term). The - operator is

functional similar to the Boolean operator !. Because it's used by popular search engines such as Google, it may be
more familiar to some user communities.

Boolean operators allow terms to be combined through logic operators. Lucene supports AND, "+", OR, NOT and "-" as Boolean operators.

", When specifying Boolean operators with keywords such as AND or NOT, the keywords must appear in all uppercase.

The standard query parser supports all the Boolean operators listed in the table above. The DisMax query parser supports only
+and -.

The OR operator is the default conjunction operator. This means that if there is no Boolean operator between two terms, the OR operator is used.
The OR operator links two terms and finds a matching document if either of the terms exist in a document. This is equivalent to a union using
sets. The symbol || can be used in place of the word OR.

In the schema. xni file, you can specify which symbols can take the place of Boolean operators such as OR. To search for documents that
contain either “jakarta apache" or just “jakarta," use the query:

"jakarta apache" jakarta
or

"jakarta apache" OR jakarta

The Boolean Operator +

The + symbol (also known as the "required" operator) requires that the term after the + symbol exist somewhere in a field in at least one
document in order for the query to return a match.

For example, to search for documents that must contain "jakarta" and that may or may not contain "lucene," use the following query:

+j akarta | ucene

lﬂ This operator is supported by both the standard query parser and the DisMax query parser.

The Boolean Operator AND (&&)

The AND operator matches documents where both terms exist anywhere in the text of a single document. This is equivalent to an intersection
using sets. The symbol && can be used in place of the word AND.

To search for documents that contain "jakarta apache" and "Apache Lucene," use either of the following queries:
"jakarta apache" AND "Apache Lucene"

"jakarta apache" && "Apache Lucene"

The Boolean Operator NOT (!)

The NOT operator excludes documents that contain the term after NOT. This is equivalent to a difference using sets. The symbol ! can be used in
place of the word NOT.

The following queries search for documents that contain the phrase "jakarta apache" but do not contain the phrase "Apache Lucene":
"jakarta apache" NOT "Apache Lucene"

"jakarta apache" ! "Apache Lucene"

The Boolean Operator -

The - symbol or "prohibit" operator excludes documents that contain the term after the - symbol.

Apache Solr Reference Guide 4.6 173

For example, to search for documents that contain "jakarta apache" but not "Apache Lucene," use the following query:

"jakarta apache" -"Apache Lucene"

Escaping Special Characters
Solr gives the following characters special meaning when they appear in a query:

+-&& PO~

To make Solr interpret any of these characters literally, rather as a special character, precede the character with a backslash character \. For
example, to search for (1+1):2 without having Solr interpret the plus sign and parentheses as special characters for formulating a sub-query with
two terms, escape the characters by preceding each one with a backslash:

V(1\V+1\)\ ;2

Grouping Terms to Form Sub-Queries

Lucene/Solr supports using parentheses to group clauses to form sub-queries. This can be very useful if you want to control the Boolean logic for
a query.

The query below searches for either “jakarta" or "apache" and "website":
(jakarta OR apache) AND website

This adds precision to the query, requiring that the term "website" exist, along with either term "jakarta" and "apache."

Grouping Clauses within a Field

To apply two or more Boolean operators to a single field in a search, group the Boolean clauses within parentheses. For example, the query
below searches for a title field that contains both the word "return” and the phrase "pink panther":

title:(+return +"pink panther")

Differences between Lucene Query Parser and the Solr Standard Query Parser

Solr's standard query parser differs from the Lucene Query Parser in the following ways:

®* A*may be used for either or both endpoints to specify an open-ended range query
® field:[* TO 100] finds all field values less than or equal to 100
® field:[100 TO *] finds all field values greater than or equal to 100
® field:[* TO *] matches all documents with the field
® Pure negative queries (all clauses prohibited) are allowed (only as a top-level clause)
® -inStock: fal se finds all field values where inStock is not false
® -field:[* TO *] finds all documents without a value for field
® A hook into FunctionQuery syntax. You'll need to use quotes to encapsulate the function if it includes parentheses, as shown in the
second example below:
® _val _:nyfield
® val_:"recip(rord(nyfield),1,2,3)"
® Support for any type of query parser. Prior to Solr 4.1, the "magic" field "_quer y_ needed to be used to nest another query parser.
However, with Solr 4.1, other query parsers can be used directly using the local parameters syntax.
¢ {l geodi st d=10 p=20. 5, 30. 2}
® Range queries ("[a TO z]"), prefix queries ("a*"), and wildcard queries ("a*b") are constant-scoring (all matching documents get an equal
score). The scoring factors TF, IDF, index boost, and "coord" are not used. There is no limitation on the number of terms that match (as
there was in past versions of Lucene).

Specifying Dates and Times
Queries against fields using the Tr i eDat eFi el d type (typically range queries) should use the appropriate date syntax:

® tinmestanp:[* TO NOW

® createdate:[1976-03-06T23: 59: 59. 999Z TO *]

® createdate:[1995-12-31T23: 59: 59. 999Z TO 2007- 03- 06T00: 00: 00Z]

® pubdat e: [NOW 1YEAR/ DAY TO NOW DAY+1DAY]

® createdate:[1976-03-06T23: 59: 59. 9997 TO 1976- 03- 06T23: 59: 59. 999Z+1YEAR]
® createdate:[1976-03-06T23: 59: 59. 9997/ YEAR TO 1976- 03- 06T23: 59: 59. 9997]

Related Topics

Apache Solr Reference Guide 4.6 174

® |ocal Parameters in Queries
® QOther Parsers

The DisMax Query Parser

The DisMax query parser is designed to process simple phrases (without complex syntax) entered by users and to search for individual terms
across several fields using different weighting (boosts) based on the significance of each field. Additional options enable users to influence the
score based on rules specific to each use case (independent of user input).

In general, the DisMax query parser's interface is more like that of Google than the interface of the 'standard' Solr request handler. This similarity
makes DisMax the appropriate query parser for many consumer applications. It accepts a simple syntax, and it rarely produces error messages.

The DisMax query parser supports an extremely simplified subset of the Lucene QueryParser syntax. As in Lucene, quotes can be used to group
phrases, and +/- can be used to denote mandatory and optional clauses. All other Lucene query parser special characters (except AND and OR)
are escaped to simplify the user experience. The DisMax query parser takes responsibility for building a good query from the user's input using
Boolean clauses containing DisMax queries across fields and boosts specified by the user. It also lets the Solr administrator provide additional
boosting queries, boosting functions, and filtering queries to artificially affect the outcome of all searches. These options can all be specified as
default parameters for the handler in the sol r conf i g. xrmi file or overridden in the Solr query URL.

Interested in the technical concept behind the DisMax name? DisMax stands for Maximum Disjunction. Here's a definition of a Maximum
Disjunction or "DisMax" query:

A query that generates the union of documents produced by its subqueries, and that scores each document with the maximum
score for that document as produced by any subquery, plus a tie breaking increment for any additional matching subqueries.

Whether or not you remember this explanation, do remember that the DisMax request handler was primarily designed to be easy to use and to
accept almost any input without returning an error.

DisMax Parameters

In addition to the common request parameter, highlighting parameters, and simple facet parameters, the DisMax query parser supports the
parameters described below. Like the standard query parser, the DisMax query parser allows default parameter values to be specified in
sol rconfi g. xm , or overridden by query-time values in the request.

Parameter Description

q Defines the raw input strings for the query.

g.alt Calls the standard query parser and defines query input strings, when the q parameter is not used.

gf Query Fields: specifies the fields in the index on which to perform the query. If absent, defaults to df .

mm Minimum "Should" Match: specifies a minimum number of fields that must match in a query. If no 'mm' parameter is specified in

the query, or as a default in sol r conf i g. xm , the effective value of the . op parameter (either in the query, as a default in
sol rconfi g. xm , or from the 'defaultOperator' option in schenma. xm) is used to influence the behavior. If . op is effectively
AND'ed, then mm=100%; if q. op is OR'ed, then mm=1. Users who want to force the legacy behavior should set a default value
for the 'mm' parameter in their sol r confi g. xm file. Users should add this as a configured default for their request handlers.

This parameter tolerates miscellaneous white spaces in expressions (e.g.," 3 < -25% 10 < -3\n", " \n-25%n ", "
\n3\n ").

pf Phrase Fields: boosts the score of documents in cases where all of the terms in the q parameter appear in close proximity.

ps Phrase Slop: specifies the number of positions two terms can be apart in order to match the specified phrase.

gs Query Phrase Slop: specifies the number of positions two terms can be apart in order to match the specified phrase. Used

specifically with the qf parameter.

tie Tie Breaker: specifies a float value (which should be something much less than 1) to use as tiebreaker in DisMax queries.
bq Boost Query: specifies a factor by which a term or phrase should be "boosted" in importance when considering a match.
bf Boost Functions: specifies functions to be applied to boosts. (See for details about function queries.)

The sections below explain these parameters in detail.

The q Parameter

The q parameter defines the main "query" constituting the essence of the search. The parameter supports raw input strings provided by users
with no special escaping. The + and - characters are treated as "mandatory" and "prohibited" modifiers for terms. Text wrapped in balanced quote
characters (for example, "San Jose") is treated as a phrase. Any query containing an odd number of quote characters is evaluated as if there
were no quote characters at all.

Apache Solr Reference Guide 4.6 175

I, The g parameter does not support wildcard characters such as *.

The g. al t Parameter

If specified, the q. al t parameter defines a query (which by default will be parsed using standard query parsing syntax) when the main g
parameter is not specified or is blank. The g. al t parameter comes in handy when you need something like a query to match all documents
(don't forget & ows=0 for that one!) in order to get collection-wise faceting counts.

The gf (Query Fields) Parameter

The gf parameter introduces a list of fields, each of which is assigned a boost factor to increase or decrease that particular field's importance in
the query. For example, the query below:

gf="fieldnen2.3 fieldTwo fiel dThree”0. 4"

assigns f i el dOne a boost of 2.3, leaves f i el dTwo with the default boost (because no boost factor is specified), and f i el dThr ee a boost of
0.4. These boost factors make matches in f i el dOne much more significant than matches in f i el dTwo, which in turn are much more significant
than matches in fi el dThr ee.

The m(Minimum Should Match) Parameter

When processing queries, Lucene/Solr recognizes three types of clauses: mandatory, prohibited, and "optional” (also known as "should" clauses).
By default, all words or phrases specified in the q parameter are treated as "optional" clauses unless they are preceded by a "+" or a "-". When
dealing with these "optional” clauses, the rmparameter makes it possible to say that a certain minimum number of those clauses must match.
The DisMax query parser offers great flexibility in how the minimum number can be specified.

The table below explains the various ways that mm values can be specified.

Syntax Example Description

Positive integer 3 Defines the minimum number of clauses that must match, regardless of how many clauses there
are in total.

Negative integer -2 Sets the minimum number of matching clauses to the total number of optional clauses, minus this
value.

Percentage 75% Sets the minimum number of matching clauses to this percentage of the total number of optional

clauses. The number computed from the percentage is rounded down and used as the minimum.

Negative percentage -25% Indicates that this percent of the total number of optional clauses can be missing. The number
computed from the percentage is rounded down, before being subtracted from the total to
determine the minimum number.

An expression beginning with =~ 3<90% Defines a conditional expression indicating that if the number of optional clauses is equal to (or less

a positive integer followed by than) the integer, they are all required, but if it's greater than the integer, the specification applies.

a > or < sign and another In this example: if there are 1 to 3 clauses they are all required, but for 4 or more clauses only 90%
value are required.

Multiple conditional 2<-25% Defines multiple conditions, each one being valid only for numbers greater than the one before it. In
expressions involving > or < 9<-3 the example at left, if there are 1 or 2 clauses, then both are required. If there are 3-9 clauses all
signs but 25% are required. If there are more then 9 clauses, all but three are required.

When specifying nmvalues, keep in mind the following:

® When dealing with percentages, negative values can be used to get different behavior in edge cases. 75% and -25% mean the same
thing when dealing with 4 clauses, but when dealing with 5 clauses 75% means 3 are required, but -25% means 4 are required.

® |f the calculations based on the parameter arguments determine that no optional clauses are needed, the usual rules about Boolean
queries still apply at search time. (That is, a Boolean query containing no required clauses must still match at least one optional clause).

* No matter what number the calculation arrives at, Solr will never use a value greater than the number of optional clauses, or a value less
than 1. (In other words, no matter how low or how high the calculated result, the minimum number of required matches will never be less
than 1 or greater than the number of clauses.)

The default value of mmis 100% (meaning that all clauses must match).

The pf (Phrase Fields) Parameter

Apache Solr Reference Guide 4.6 176

Once the list of matching documents has been identified using the f g and gf parameters, the pf parameter can be used to "boost" the score of
documents in cases where all of the terms in the q parameter appear in close proximity.

The format is the same as that used by the qf parameter: a list of fields and "boosts" to associate with each of them when making phrase queries
out of the entire q parameter.

The ps (Phrase Slop) Parameter

The ps parameter specifies the amount of "phrase slop" to apply to queries specified with the pf parameter. Phrase slop is the number of
positions one token needs to be moved in relation to another token in order to match a phrase specified in a query.

The gs (Query Phrase Slop) Parameter

The gs parameter specifies the amount of slop permitted on phrase queries explicitly included in the user's query string with the gf parameter. As
explained above, slop refers to the number of positions one token needs to be moved in relation to another token in order to match a phrase
specified in a query.

Theti e (Tie Breaker) Parameter

The t i e parameter specifies a float value (which should be something much less than 1) to use as tiebreaker in DisMax queries.

When a term from the user's input is tested against multiple fields, more than one field may match. If so, each field will generate a different score
based on how common that word is in that field (for each document relative to all other documents). The t i e parameter lets you control how
much the final score of the query will be influenced by the scores of the lower scoring fields compared to the highest scoring field.

A value of "0.0" makes the query a pure "disjunction max query": that is, only the maximum scoring subquery contributes to the final score. A

value of "1.0" makes the query a pure "disjunction sum query" where it doesn't matter what the maximum scoring sub query is, because the final
score will be the sum of the subquery scores. Typically a low value, such as 0.1, is useful.

The bg (Boost Query) Parameter

The bq parameter specifies a raw query string (expressed in Solr query syntax) that will be included with the user's query to influence the score.
For example, if you wanted to add a relevancy boost for recent documents:

g=cheese bqg=dat e\ [NOW DAY- 1YEAR TO NOW DAY\]

You can specify multiple bqg parameters. If you want your query to be parsed as separate clauses with separate boosts, use multiple bg
parameters.

The bf (Boost Functions) Parameter

The bf parameter specifies functions (with optional boosts) that will be included in the user's query to influence the score. Any function supported
natively by Solr can be used, along with a boost value. For example:

recip(rord(nyfield),1,2,3)"1.5

Specifying functions with the bf parameter is just shorthand for using the val : ". .. functi on..." syntax in a bq parameter.

For example, if you want to show the most recent documents first, use

recip(rord(creationbDate), 1, 1000, 1000)

Examples of Queries Submitted to the DisMax Query Parser
Normal results for the word "video" using the StandardRequestHandler with the default search field:
http://1ocal host: 8983/ sol r/sel ect/ ?g=vi deo&f | =nanme+scor e

The "dismax" handler is configured to search across the text, features, name, sku, id, manu, and cat fields all with varying boosts designed to
ensure that "better" matches appear first, specifically: documents which match on the name and cat fields get higher scores.

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=di smax&g=vi deo

Note that this instance is also configured with a default field list, which can be overridden in the URL.

Apache Solr Reference Guide 4.6 177

http://localhost:8983/solr/select/?q=video&fl=name+score
http://localhost:8983/solr/select/?defType=dismax&q=video

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=di snax&qg=vi deo&f | =*, score

You can also override which fields are searched on and how much boost each field gets.

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=di smax&qg=vi deo&qf =f eat ur es”20. 0+t ext 0. 3
You can boost results that have a field that matches a specific value.

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=di snax&q=vi deo&bqg=cat : el ectroni cs"5.0

Another instance of the handler is registered using the gt "instock" and has slightly different configuration options, notably: a filter for (you
guessed it) i nSt ock: true).

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=di snax&qg=vi deo&f | =nane, scor e, i nSt ock
http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=di smax&q=vi deo&qt =i nst ock&f | =nane, scor e, i nSt ock

One of the other really cool features in this handler is robust support for specifying the "BooleanQuery.minimumNumberShouldMatch" you want to
be used based on how many terms are in your user's query. These allows flexibility for typos and partial matches. For the dismax handler, one
and two word queries require that all of the optional clauses match, but for three to five word queries one missing word is allowed.

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=di smax&q=bel ki n+i pod
http://1ocal host: 8983/ sol r/sel ect/ ?def Type=di snax&q=bel ki n+i pod+gi bberi sh
http://1ocal host: 8983/ sol r/sel ect/ ?def Type=di snax&q=bel ki n+i pod+appl e

Just like the StandardRequestHandler, it supports the debugQuery option to viewing the parsed query, and the score explanations for each
document.

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=di smax&qg=bel ki n+i pod+gi bber i sh&debugQuery=true

http://1ocal host: 8983/ sol r/sel ect/ ?def Type=di smax&q=vi deo+car d&debugQuery=true

The Extended DisMax Query Parser

The Extended DisMax (eDisMax) query parser is an improved version of the DisMax query parser. In addition to supporting all the DisMax query
parser parameters, Extended Dismax:

supports the full Lucene query parser syntax.

supports queries such as AND, OR, NOT, -, and +.

treats "and" and "or" as "AND" and "OR" in Lucene syntax mode.

respects the 'magic field' names _val _and _query_. These are not a real fields in schema. xm , but if used it helps do special things

(like a function query in the case of _val _ or a nested query in the case of _query_). If _val _is used in a term or phrase query, the

value is parsed as a function.

® includes improved smart partial escaping in the case of syntax errors; fielded queries, +/-, and phrase queries are still supported in this
mode.

® improves proximity boosting by using word shingles; you do not need the query to match all words in the document before proximity
boosting is applied.

® includes advanced stopword handling: stopwords are not required in the mandatory part of the query but are still used in the proximity
boosting part. If a query consists of all stopwords, such as "to be or not to be", then all words are required.

® includes improved boost function: in Extended DisMax, the boost function is a multiplier rather than an addend, improving your boost
results; the additive boost functions of DisMax (bf and bq) are also supported.

® supports pure negative nested queries: queries such as +f oo (- f 00) will match all documents.

® |ets you specify which fields the end user is allowed to query, and to disallow direct fielded searches.

The Extended DisMax query parser is still under active development, in fact many changes were introduced for Solr 4. However,
many organizations are already using it in production with great success.

Extended DisMax Parameters

In addition to all the DisMax parameters, Extended DisMax includes these query parameters:

The boost Parameter

A multivalued list of strings parsed as queries with scores multiplied by the score from the main query for all matching documents. This parameter
is shorthand for wrapping the query produced by eDisMax using the Boost QPar ser Pl ugi n

The | ower caseQper at or s Parameter

Apache Solr Reference Guide 4.6 178

http://localhost:8983/solr/select/?defType=dismax&q=video&fl=*,score
http://localhost:8983/solr/select/?defType=dismax&q=video&qf=features^20.0+text^0.3
http://localhost:8983/solr/select/?defType=dismax&q=video&bq=cat:electronics^5.0
http://localhost:8983/solr/select/?defType=dismax&q=video&fl=name,score,inStock
http://localhost:8983/solr/select/?defType=dismax&q=video&qt=instock&fl=name,score,inStock
http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod
http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+gibberish
http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+apple
http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+gibberish&debugQuery=true
http://localhost:8983/solr/select/?defType=dismax&q=video+card&debugQuery=true

A Boolean parameter indicating if lowercase "and" and "or" should be treated the same as operators "AND" and "OR".
The ps Parameter

Default amount of slop on phrase queries built with pf , pf 2 and/or pf 3 fields (affects boosting).

The pf 2 Parameter

A multivalued list of fields with optional weights, based on pairs of word shingles.

The ps2 Parameter

Default amount of slop on phrase queries built with pf , pf 2 and/or pf 3 fields (affects boosting). New with Solr 4, it is similar to ps but sets default
slop factor for pf 2. If not specified, ps is used.

The pf 3 Parameter

A multivalued list of fields with optional weights, based on triplets of word shingles. Similar to pf , except that instead of building a phrase per field
out of all the words in the input, it builds a set of phrases for each field out of each triplet of word shingles.

The ps3 Parameter
New with Solr 4. As with ps but sets default slop factor for pf 3. If not specified, ps will be used.
The st opwor ds Parameter

A Boolean parameter indicating if the St opFi | t er Fact or y configured in the query analyzer should be respected when parsing the query: if it is
false, then the St opFi | t er Fact ory in the query analyzer is ignored.

The uf Parameter

Specifies which schema fields the end user is allowed to explicitly query. This parameter supports wildcards. The default is to allow all fields,
equivalent to &uf =*. To allow only title field, use &uf =t i t | e. To allow title and all fields ending with _s, use &uf =titl e, *_s. To allow all fields
except title, use &uf =*-ti t| e. To disallow all fielded searches, use &uf =-*.

Examples of Queries Submitted to the Extended DisMax Query Parser

Boost the result of the query term "hello" based on the document's popularity:

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=edi smax&qg=hel | o&pf =t ext &qf =t ext &voost =popul
arity

Search for iPods OR video:

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=edi smax&qg=i pod OR vi deo

Search across multiple fields, specifying (via boosts) how important each field is relative each other:

http://1 ocal host: 8983/ sol r/ sel ect/ ?q=vi deo&def Type=edi smax&qf =f eat ur es*20. 0+t ext ~0. 3

You can boost results that have a field that matches a specific value:

http://1ocal host: 8983/ sol r/ sel ect/ ?q=vi deo&def Type=edi smax&qf =f eat ur es*20. 0+t ext *0. 3&b
g=cat: el ectroni cs*5.0

Using the "mm" param, 1 and 2 word queries require that all of the optional clauses match, but for queries with three or more clauses one missing
clause is allowed:

Apache Solr Reference Guide 4.6 179

http://1 ocal host: 8983/ sol r/ sel ect/ ?q=bel ki n+i pod&def Type=edi smax&mm=2
http://1ocal host: 8983/ sol r/ sel ect/ ?q=bel ki n+i pod+gi bberi sh&def Type=edi smax&mm=2
http://1ocal host: 8983/ sol r/ sel ect/ ?q=bel ki n+i pod+appl e&def Type=edi smax&m=2

Using negative boost

Negative query boosts have been supported at the "Query" object level for a long time (resulting in negative scores for matching documents).
Now the QueryParsers have been updated to handle this too.

Using 'slop’

Di smax and Edi smax can run queries against all query fields, and also run a query in the form of a phrase against the phrase fields. (This will
work only for boosting documents, not actually for matching.) However, that phrase query can have a 'slop,’ which is the distance between the
terms of the query while still considering it a phrase match. For example:

g=f oo bar

gf =fi el d175 fiel d2710
pf=fiel d1750 fi el d2720
def Type=di smax

With these parameters, the Dismax Query Parser generates a query that looks something like this:

(+(fieldl:foo”5 OR field2:bar”10) AND (fieldl:bar"5 OR fiel d2: bar”10))

But it also generates another query that will only be used for boosting results:

fieldl:"foo bar"”~50 OR field2:"foo bar"”20

Thus, any document that has the terms "foo" and "bar" will match; however if some of those documents have both of the terms as a phrase, it will
score much higher because it's more relevant.

If you add the parameter ps (phrase slop), the second query will instead be:

ps=10 fieldl:"foo bar"~107"50 OR fiel d2:"foo bar"~10"20

This means that if the terms "foo" and "bar" appear in the document with less than 10 terms between each other, the phrase will match. For
example the doc that says:

Foo terml tern2 ternB *bar*

will match the phrase query.
How does one use phrase slop? Usually it is configured in the request handler (in sol r conf i g).

With query slop (gs) the concept is similar, but it applies to explicit phrase queries from the user. For example, if you want to search for a name,
you could enter:

g="Hans Anderson”

A document that contains "Hans Anderson” will match, but a document that contains the middle name "Christian" or where the name is written
with the last name first ("Anderson, Hans") won't. For those cases one could configure the query field gs, so that even if the user searches for an
explicit phrase query, a slop is applied.

Finally, edi smax contains not only a phrase fields (pf) parameters, but also phrase and query fields 2 and 3. You can use those fields for setting
different fields or boosts. Each of those can use a different phrase slop.

Using the 'magic fields' _val_and _query_

Apache Solr Reference Guide 4.6 180

If the 'magic field' name _val _ is used in a term or phrase query, the value is parsed as a function.
The Solr Query Parser's use of _val _ and _quer y_ differs from the Lucene Query Parser in the following ways:
® |f the magic field name _val _ is used in a term or phrase query, the value is parsed as a function.

® |t provides a hook into Funct i onQuery syntax. Quotes are necessary to encapsulate the function when it includes parentheses. For
example:

_val _:nyfield
_val _:"recip(rord(myfield),1,2,3)"

®* The Solr Query Parser offers nested query support for any type of query parser (via QParserPlugin). Quotes are often necessary to
encapsulate the nested query if it contains reserved characters. For example:

query:"{\!dismax; qf =nyfi el d} how, now;, br own; cow'

Although not technically a syntax difference, note that if you use the Solr DateField type, any queries on those fields (typically range queries)
should use either the Complete ISO 8601 Date syntax that field supports, or the DateMath Syntax to get relative dates. For example:

tinmestanp: [* TO NOW

createdate:[1976-03-06T23: 59: 59. 999Z TO *]

createdat e: [1995- 12- 31T23: 59: 59. 999Z TO 2007- 03- 06T00: 00: 00Z]

pubdat e: [NOM 1YEAR/ DAY TO NOW DAY+1DAY]

createdate: [1976- 03-06T23: 59: 59. 999Z TO 1976- 03- 06T23: 59: 59. 999Z+1VYEAR]
creat edate: [1976- 03- 06T23: 59: 59. 9997/ YEAR TO 1976- 03- 06T23: 59: 59. 999Z7]

5 TO must be uppercase, or Solr will report a ‘Range Group' error.

i}

Local Parameters in Queries

Local parameters are arguments in a Solr request that are specific to a query parameter. Local parameters provide a way to add meta-data to
certain argument types such as query strings. (In Solr documentation, local parameters are sometimes referred to as LocalParams.)

Local parameters are specified as prefixes to arguments. Take the following query argument, for example:
g=sol r rocks

We can prefix this query string with local parameters to provide more information to the Standard Query Parser. For example, we can change the
default operator type to "AND" and the default field to “title":

g={!qg. op=AND df =title}solr rocks
These local parameters would change the query to require a match on both "solr" and "rocks" while searching the "title" field by default.
Basic Syntax of Local Parameters
To specify a local parameter, insert the following before the argument to be modified:
® Begin with {!
® |nsert any number of key=value pairs separated by white space
® End with } and immediately follow with the query argument

You may specify only one local parameters prefix per argument. Values in the key-value pairs may be quoted via single or double quotes, and
backslash escaping works within quoted strings.

Query Type Short Form

If a local parameter value appears without a name, it is given the implicit name of "type". This allows short-form representation for the type of
query parser to use when parsing a query string. Thus

Apache Solr Reference Guide 4.6 181

http://wiki.apache.org/solr/FunctionQuery
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/schema/DateField.html
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html

g={!di smax gf =nyfield}solr rocks
is equivalent to:

gq={!type=di smax qf =nyfield}solr rocks
Specifying the Parameter Value with the 'v' Key

A special key of v within local parameters is an alternate way to specify the value of that parameter.
q={'di smax qf =nyfiel d}solr rocks
is equivalent to

g={!type=di smax gf=nyfield v='"solr rocks'}

Parameter Dereferencing

Parameter dereferencing or indirection lets you use the value of another argument rather than specifying it directly. This can be used to simplify
queries, decouple user input from query parameters, or decouple front-end GUI parameters from defaults set in sol r confi g. xni .

gq={!di smax gf =nyfiel d}solr rocks
is equivalent to:

g={!type=di smax gf =nyfield v=%$qq}&qqg=sol r rocks

Other Parsers

In addition to the main query parsers discussed earlier, there are several other query parsers that can be used instead of or in conjunction with
the main parsers for specific purposes. This section details the other parsers, and gives examples for how they might be used.

Many of these parsers are expressed the same way as Local Parameters in Queries.
Query parsers discussed in this section:

® Block Join Query Parsers
® Boost Query Parser

® Collapsing Query Parser
® Field Query Parser

® Function Query Parser

® Function Range Query Parser
Join Query Parser
Lucene Query Parser
Max Score Query Parser
Nested Query Parser

Old Lucene Query Parser
Prefix Query Parser

Raw Query Parser

Spatial Filter Query Parser
Surround Query Parser
Switch Query Parser
Term Query Parser

Block Join Query Parsers

There are two query parsers that support block joins. These parsers allow indexing and searching for relational content. Uses include any place
where you want to index sub-documents to a parent document, such as a blog post parent document and comments as child documents. Or
products as parent documents and sizes, colors, or other variations as child documents. In terms of performance, indexing the relationships
between documents may be more efficient than attempting to do joins only at query time, since the relationships are already stored in the index
and do not need to be computed.

Note that these parsers are new and the described functionality may change in future releases.
To use these parsers, documents must be indexed as child documents. Currently documents can only be indexed with the relational structure with
the XML update handler. The XML structure allows <doc> elements inside <doc> elements. You must also include a field that identifies the

parent document as a parent; it can be any field that suits this purpose, and it will be used with the query parser syntaxes defined below.

For example, here are two documents and their child documents:

Apache Solr Reference Guide 4.6 182

<add>

<doc>

<field name="id">1</fi el d>

<field nane="title">Solr adds bl ock join support</field>

<field nane="cont ent _t ype" >par ent Docunent </ fi el d>
<doc>
<field name="id">2</fiel d>
<field nane="coments">Sol rd oud supports it too!</field>
</ doc>

</ doc>

<doc>
<field nane="id">3</fiel d>
<field name="titl e">Lucene and Solr 4.5 is out</field>
<field name="cont ent _t ype" >par ent Docunent </ fi el d>
<doc>
<field nane="id">4</fiel d>
<field nane="coments">Lots of new features</field>
</ doc>

</ doc>

</ add>

In this example, we have indexed the parent documents with the field cont ent _t ype, which has the value "parentDocument". We could have
also used a boolean field, such as i sPar ent , with a value of "true", or any other similar approach.

Block Join Children Query Parser

This parser takes a query that matches some parent documents and returns their children. The syntax for this parseris: g={! chi | d

of =<al | Par ent s>} <sonePar ent s>. The parameter al | Par ent s is a filter that matches only parent documents; here you would define the
field and value that you used to identify a document as a parent. The parameter sonePar ent s identifies a query that will match some or all of the
parent documents. The output is the children.

Using the example documents above, we can construct a query such as g={! chi | d
of ="content _t ype: parent Docunent "} titl e: | ucene. We only get one document in response:

<result nanme="response" nunfFound="1" start="0">
<doc>
<str nanme="id">12344</str>
<str name="coments">Lots of new features</str>
</ doc>
</result>

Block Join Parent Query Parser

This parser takes a query that matches child documents and returns their parents. The syntax for this parser is similar: g={! par ent

whi ch=<al | Par ent s>} <sonmeChi | dr en>. Again the parameter The parameter al | Par ent s is a filter that matches only parent documents;
here you would define the field and value that you used to identify a document as a parent. The parameter sonmeChi | dr en is a query that
matches some or all of the child documents. Note that the query for someChi | dr en should match only child documents or you may get an
exception.

Again using the example documents above, we can construct a query such as q={! par ent
whi ch="cont ent _t ype: par ent Docunent "} conmment s: Sol r Cl oud. We get this document in response:

Apache Solr Reference Guide 4.6 183

<result nanme="response" nunfFound="1" start="0">
<doc>
<str name="id">12341</str>
<arr name="title"><str>Solr adds block join support</str></arr>
<arr name="content _t ype" ><str>par ent Docunment </ str></arr>
</ doc>
</result>

Boost Query Parser

Boost QPar ser extends the QPar ser Pl ugi n and creates a boosted query from the input value. The main value is the query to be boosted.
Parameter b is the function query to use as the boost. The query to be boosted may be of any type.

Examples:

Creates a query "foo" which is boosted (scores are multiplied) by the function query | og(popul arity):

{!boost b=l og(popul arity)}foo

Creates a query "foo" which is boosted by the date boosting function referenced in Reci pr ocal Fl oat Functi on:

{!boost b=reci p(ns(NON nydatefield), 3. 16e-11,1,1)}foo0

Collapsing Query Parser

The Col | apsi ngQPar ser is really a post filter that provides more performant field collapsing than Solr's standard approach when the number of
distinct groups in the result set is high. This parser collapses the result set to a single document per group before it forwards the result set to the
rest of the search components. So all downstream components (faceting, highlighting, etc...) will work with the collapsed result set.

Collapse based on the highest scoring document:

fqg={!col | apse fiel d=<fiel d_nane>}

Collapse based on the minimum value of a numeric field:

fg={!col |l apse field=<field_name> m n=<fiel d_nane>}

Collapse based on the maximum value of a numeric field:

g={!col |l apse fiel d=<field_name> max=<fiel d_nane>}

Collapse with a null policy:

fg={!col |l apse field=<field_name> null Policy=<null Policy>}

There are three null policies:
® ignore: removes documents with a null value in the collapse field. This is the default.
® expand: treats each document with a null value in the collapse field as a separate group.
® collapse: collapses all documents with a null value into a single group using either highest score, or minimum/maximum.

The CollapsingQParserPlugin fully supports the QueryElevationComponent. There is not, however, a way to expand the groups for a page of
results so it is not a complete replacement for the Solr field collapsing functionality.

Field Query Parser

The Fi el dQPar ser extends the QPar ser Pl ugi n and creates a field query from the input value, applying text analysis and constructing a

Apache Solr Reference Guide 4.6 184

phrase query if appropriate. The parameter f is the field to be queried.

Example:

{!field f=nyfiel d} Foo Bar

This example creates a phrase query with "foo" followed by "bar" (assuming the analyzer for myf i el d is a text field with an analyzer that splits on
whitespace and lowercase terms). This is generally equivalent to the Lucene query parser expression nyfi el d: "Foo Bar".

Function Query Parser

The Funct i onQPar ser extends the QPar ser Pl ugi n and creates a function query from the input value. This is only one way to use function
queries in Solr; for another, more integrated, approach, see the section on Function Queries.

Example:

{!func}! og(foo)

Function Range Query Parser

The Funct i onRangeQPar ser extends the QPar ser Pl ugi n and creates a range query over a function. This is also referred to as f r ange, as
seen in the examples below.

Other parameters:

Parameter Description

| The lower bound, optional

u The upper bound, optional

incl Include the lower bound: true/false, optional, default=true

incu Include the upper bound: true/false, optional, default=true
Examples:

{!frange | =1000 u=50000} nyfield

fgq={!frange | =0 u=2.2} sun(user_ranking, editor_ranking)

Both of these examples are restricting the results by a range of values found in a declared field or a function query. In the second example, we're
doing a sum calculation, and then defining only values between 0 and 2.2 should be returned to the user.

For more information about range queries over functions, see Yonik Seeley's introductory blog post Ranges over Functions in Solr 1.4, hosted at
SearchHub.org.

Join Query Parser

Joi n@Par ser extends the QPar ser Pl ugi n. It allows normalizing relationships between documents with a join operation. This is different from
in concept of a join in a relational database because no information is being truly joined. An appropriate SQL analogy would be an “inner query".

Examples:

Find all products containing the word "ipod", join them against manufacturer docs and return the list of manufacturers:

{!j oi n+f ronemanu_i d_s+t o=i d} i pod

Find all manufacturer docs named "belkin”, join them against product docs, and filter the list to only products with a price less than $12:

{!] oi n+f ron¥i d+t o=manu_i d_s} conpName_s: Bel ki n&f g=pri ce: [*+TO+12]

Apache Solr Reference Guide 4.6 185

http://searchhub.org/2009/07/06/ranges-over-functions-in-solr-14/

For more information about join queries, see the Solr Wiki page on Joins. Erick Erickson has also written a blog post about join performance
called Solr and Joins, hosted by SearchHub.org.

Lucene Query Parser

The LuceneQPar ser extends the QPar ser Pl ugi n by parsing Solr's variant on the Lucene QueryParser syntax. This is effectively the same
query parser that is used in Lucene. It uses the operators g. op, the default operator ("OR" or "AND") and df , the default field name.

Example:

{!lucene q. op=AND df =text}nyfield:foo +bar -baz

For more information about the syntax for the Lucene Query Parser, see the Lucene javadocs.

Max Score Query Parser

The MaxScor eQPar ser extends the LuceneQPar ser but returns the Max score from the clauses. It does this by wrapping all SHOULD clauses
inaDi sjuncti onMaxQuer y with tie=1.0. Any MUST or PRCOHI BI TED clauses are passed through as-is. Non-boolean queries, e.g.
NumericRange falls-through to the LuceneQPar ser parser behavior.

Example:

{!'maxscore tie=0.01}C OR (D AND E)

Nested Query Parser

The Nest edPar ser extends the QPar ser Pl ugi n and creates a nested query, with the ability for that query to redefine its type via local
parameters. This is useful in specifying defaults in configuration and letting clients indirectly reference them.

Example:

{!'query def Type=func v=$q1}

If the q1 parameter is price, then the query would be a function query on the price field. If the g1 parameter is {!lucene}inStock:true}} then a term
query is created from the Lucene syntax string that matches documents with i nSt ock=t r ue. These parameters would be defined in
sol rconfig. xm ,inthe def aul t s section:

<l st name="defaul ts"
<str name="ql">{!lucene}i nStock:true</str>
</lst>

For more information about the possibilities of nested queries, see Yonik Seeley's blog post Nested Queries in Solr, hosted by SearchHub.org.

Old Lucene Query Parser

A dLuceneQPar ser extends the QPar ser Pl ugi n by parsing Solr's variant of Lucene's QueryParser syntax, including the deprecated sort
specification after the query.

Example:

{!lucenePlusSort} nyfield:foo +bar -baz;price asc

Prefix Query Parser

Pr ef i xQPar ser extends the QPar ser Pl ugi n by creating a prefix query from the input value. Currently no analysis or value transformation is
done to create this prefix query. The parameter is f , the field. The string after the prefix declaration is treated as a wildcard query.

Example:

Apache Solr Reference Guide 4.6 186

http://wiki.apache.org/solr/Join
http://searchhub.org/2012/06/20/solr-and-joins/
http://lucene.apache.org/core/4_0_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description
http://searchhub.org/2009/03/31/nested-queries-in-solr/

{!'prefix f=nyfield}foo

This would be generally equivalent to the Lucene query parser expression nyfi el d: f oo*.

Raw Query Parser

RawQPar ser extends the QPar ser Pl ugi n by creating a term query from the input value without any text analysis or transformation. This is
useful in debugging, or when raw terms are returned from the terms component (this is not the default). The only parameter is f , which defines
the field to search.

Example:

{!raw f=nyfiel d} Foo Bar

This example constructs the query: Ter mQuery(Ter m("nyfi el d","Foo Bar")).

For easy filter construction to drill down in faceting, the TermQParserPlugin is recommended. For full analysis on all fields, including text fields,
you may want to use the FieldQParserPlugin.

Spatial Filter Query Parser

Spati al Fi | t er QPar ser extends the QPar ser Pl ugi n by creating a spatial Filter based on the type of spatial point used. The field must
implement SpatialQueryable. All units are in Kilometers.

This query parser takes the following parameters:

Parameter Description

sfield The field on which to filter. Required.
pt The point to use as a reference. Must match the dimension of the field. Required.
d The distance in km. Required.

The distance measure used currently depends on the FieldType. Lat LonType defaults to using haversine, Poi nt Type defaults to Euclidean
(2-norm).

This example shows the syntax:

{!geofilt sfield=<location_field> pt=<lat,|on> d=<di stance>}

Here are some examples with values configured:

fg={!geofilt sfield=store pt=10.312,-20.556 d=3.5}

fg={!geofilt sfield=store}&pt=10.312,-20&d=3.5

fqg={!geofilt}&sfiel d=store&pt=10.312, - 20&d=3. 5

If using geof i I t with Lat LonType, it is capable of producing scores equal to the computed distance from the point to the field, making it useful
as a component of the main query or a boosting query.

There is more information about spatial searches available in the section Spatial Search.
Surround Query Parser
Sur roundQPar ser extends the QPar ser Pl ugi n. This provides support for the Surround query syntax, which provides proximity search

functionality. There are two operators: w creates an ordered span query and n creates an unordered one. Both operators take a numeric value to
indicate distance between two terms. The default is 1, and the maximum is 99. Note that the query string is not analyzed in any way.

Apache Solr Reference Guide 4.6 187

http://lucene.apache.org/solr/api-4_0_0-BETA/org/apache/solr/schema/SpatialQueryable.html

Example:

{!surround 3w(foo, bar)}

This example would find documents where the terms "foo" and "bar" were no more than 3 terms away from each other (i.e., no more than 2 terms
between them).

This query parser will also accept boolean operators (AND, OR, and NOT, in either upper- or lowercase), wildcards, quoting for phrase searches,
and boosting. The wand n operators can also be expressed in upper- or lowercase.

More information about Surround queries can be found at http://wiki.apache.org/solr/SurroundQueryParser.

Switch Query Parser
Swi t chQPar ser is a QPar ser Pl ugi n that acts like a "switch" or "case" statement.

The prima